

Challenges and Opportunities for Oral Delivery of Poorly Soluble Drugs

Dr. Navnit Shah

Distinguished Scientist

Hoffmann-La Roche, Inc.

Outline

- Overview of Industry Today
 - Sources of Oral Bioavailability Limitations
 - Market Trends
- Challenges & Opportunities for Poorly Soluble APIs
 - Impact of low solubility in development
 - Case studies of successful development
- Technologies and Limitations for Handling Poorly Soluble Compounds
 - Emerging Opportunities to Improve Amorphous Development
- Future Direction and Concluding Comments

Sources of Bioavailability Limitations

Maximum Absorbable Dose Noyes-Whitney Equation BLUE SHEET RELEASED FOR PRESENTATION

Solubility Trends & Developmental Pipelines Compound Trends Lipinski's Rule of 5

- Predictor of Limited Oral Bioavailability
 - Molecular Weight > 500
 - Log P > 5
 - H-Bond Donors > 5
 - H-Bond Acceptors > 10
- Examples Meeting The Rule of 5
 - Cyclosporine
 - Itraconazole
 - Ritonavir
 - Lopinavir

592 oral drugs approved worldwide between 1983 and 2007

The size of the squares represents the mean Lipinski score

Low Solubility Drug Development Challenges

- Low solubility can present major challenges to the successful development of NCEs
- The nature of the challenges change as the program progresses through clinical development
 BLUE SHEET RELEASED FOR PRESENTATION

Solubility Driven Challenges in Preclinical Development

- Adequate solubility needed for potency and safety assays and must be considered during design and execution of *in vitro* assays
 - Compounds with poor solubility have the potential to precipitate in assay media/buffer.
 - DMSO stock solutions of poorly soluble compounds have the potential to precipitate during freeze thaw cycles.
 - Assay media greatly impacts solubility
- Adequate solubility is needed for in vivo studies at all stages leading to EIH
 - To achieve optimal exposure in PK/PD studies to get proof of concept (POC) in appropriate animal models for project to move to the next stage
 - Multiple fold exposure is required for safety studies in preclinical tox species
 - Salt forms or special formulation are needed to achieve the desired exposure
 - To achieve the exposure in human studies

Future Challenges

- Design and development of technologies and compositions to support early development work with limited API supply
- Optimization of in silico methods to improve computer based design
- New materials for achieving maximum exposure (multiples over anticipated dosB)_LUE SHEET RELEASED FOR PRESENTATION

Options for Improving Solubility

Compound & Technology Risk Mapping

- Low solubility compounds are inherently more challenging to develop, raising the risk of failure
- Many technologies can address low solubility but also present trade-offs

Tricor® - Formulation Intervention to Improve Delivery

Neoral® - Formulation Intervention to Improve Delivery and

Extend Market Protection

Kaletra® - Amorphous Dispersion for Improve Delivery

Rosenberg et al. Patent # WO 2006/091529 A2

Kaletra Soft Gelatin Capsule

- Dose per unit:
 - 133 mg lopinavir/33 mg ritonavir
- Dose administration:
 - t.i.d. with food
- Refrigerated storage required

Kaletra Tablet

- Dose per unit:
 - 200 mg lopinavir/50 mg ritonavir
- Dose administration:
 - b.i.d. independent of food
- Store at ambient conditions

Zelboraf® - Molecule to Medicine with Novel Technology

- Poor Solubility >>>> Poor Bioavailability
- Polymorphic Transformation (metastable Form I to stable Form II) >>>> Clinical Supply Stockout Situation
- High Dose >>>> Patient Dosing Convenience

Zelboraf® - Making a Difference in Therapy

Bioavailability Comparison

Treatment Results in Tumor Regression

- Development of an amorphous formulation enabled a molecule which could otherwise not be delivered → Life saving benefit to patients in need
- Successful implementation of new technology led to commercial product

Oral Formulations Approaches for Poorly Water Soluble Compounds (BCS 2/4 compounds)

Conventional → No-Conventional: Risk and complexity

Need for amorphous formulation has significantly increased

Technologies to Improve Solubility **PRODRUGS**

Chemical approach using reversible derivatives that is pharmacologically inert

Successfully applied to a number of commercially marketed products

Prodrugs represents a Chemical/Biochemical approach to the Optimization of Drug Delivery

Advantages

- NCE, Patentable
- Enhanced biopharmaceutical performance

VX-175/GW 908 (A Phosphate Prodrug of Amprenavir)

7 fold increase in solubility

- Reducing development cost
- •Site targeted prodrug design
- Expanding chemistries

Technologies to Improve Solubility PARTICLE SIZE REDUCTION

Advantages

- Improve exposure reduce dose
- Faster onset of action improve efficacy
- Minimize variability improve efficacy and decrease toxicity
- Reduce/eliminate food effect improve convenience and compliance

- Need for more advanced MFG technologies – Imprinting, Templating, etc...
- Expansion of nanotechnology into drugdevice hybrid products – MEMs technology
- Lower cost of goods for manufacturing Current technologies are expensive,

Technologies to Improve Solubility LIPID FORMULATIONS

Advantages

- Reduced food effect
- Permeability enhancement
- Liquid nature provides for ease of scale-up

- Expansion of materials to support formulation development
- New technologies to improve manufacturability

Technologies to Improve Solubility CYCLODEXTRINS

Cyclodextrins

Oligosaccharides (6 or

more glucopyranose units)

Forms inclusion complexes with drugs

- Steric
- Thermodynamic interactions

Advantages

- Enhanced drug delivery through biological membranes
- Increased stability

Versus Time Profile of Cinnarizine After a 25 mg Dose to Male Beagle Dogs (n=4), SBE4-β-CD, pH 4.5 Solution (□); HP-β-CD, pH 4.5 Solution (□); SBE4-β-CD, Capsule (●); pH 4.5 Aqueous Suspension (Δ); Plain Capsule - No SBE4-β-CD

Opportunities

 Improve stability of cyclodextrin in the intestinal environment

From: Javinen et al. *J. Pharm. Sci.*, 84, 295-299 (1995)

O

Del Valle et al., *Process Biochem.*, (2003) Carrier et al. *J. Control. Release*. 123, 78-99. (2007)

Technologies to Improve Solubility POLYMERIC MICELLES

Self-assembling amphiphilic polymer

(i.g. poly(ethylene oxide)-b-poly(L-amino acid)

(PEO-*b*-PLAA)) forms micelles (< 100 nm)

- Provides sites for attachment of drugs
- Better kinetic and thermodynamic stability than surfactant based micelles

Advantages

- Stays unrecognized during blood circulations
- Extended circulation time
- Lower toxicity

Opportunities

Loading efficiency

Technologies to Improve Solubility AMORPHOUS TECHNOLOGIES

THERMODYNAMIC PROPERTIES

SOLUBILITY ADVANTAGE ACHIEVING SUPERSATURATION PARTICLE SIZE REDUCTION $S = S_{rr} e^{\left(\frac{2\gamma M}{r \rho R T}\right)}$ THERMODYNAMIC CONTROL $\Delta G = \Delta H - T\Delta S$

Time (min)

<u>Advantages</u>

- **Supports solid** dosage form
- Continuous manufacturing
- Potential for greater exposure than other technologies

Spray Drying (SDD)

- Solvent evaporation
- Low boiling solvent

AMORPHOUS MANUFACTURING

Microprecipitation (MBP)

- Solvent/Antisolvent
- Enables high BP solvent
- Hot Melt Extrusion (HME)

- Non-solvent

Fluid-bed layering (FBL) - Temp, and shear

- Drug/polymer layering
- Solvent evaporation
- Low boiling solvent

- **Develop predictive** tools for dispersions
- New materials to improve exposure and drug loading
- **New technologies** to improve manufacturing

Examples of Commercial Products Using Amorphous API or ASD

Product	Form	Mol.Wt	Tm	Tg	Tm/Tg (C/C)	Tm/Tg (K/K)	Log P	Marketed Name
Zafiralukast	Amo. API	575.7	139	98	1.4	1.1	4.8	Accolate (GSK)
Rosuvastatin Ca	Amo. API	481.5	135	102	1.3	1.1	1.5	Crestor (AZ)
Quniapril HCl	Amo. API	474.9	125	91	1.4	1.1	0.9	Accupril (Pfizer)
Nelfinavir Mes.	Amo. API	663.9	133	105	1.3	1.1	4.1	Viracept (Pfizer)
Itraconazole	ASD	705.6	166	59	2.8	1.3		Sporanox (Jansen)
Ritonavir	ASD	720.3	123	87	1.4	1.1	4.9	Norvir (Abbott)
Lopinavir	ASD	628.8	125	101	1.2	1.1	~4.3	Kaletra* (Abbott)
Telaprevir	ASD	679.9	246	105	2.3	1.4	3.5	Incivek (Vertex)
Vemurafenib	ASD	489.9	270	109	2.5	1.4	3.8	Zelboraf (Roche)

Pure amorphous API poses much higher risk compared to ASD

- Development of stabilized ASD is preferred
- Successful commercialization of ASDs has been achieved with multiple technologies

Challenges for Predicting Suitability & Stability of Amorphous Dispersions

Heating & Cooling method has an issue of decomposition of the compound with high melting point
 The compound of "easy amorphous" can be categorized into non-crystallizing compounds and has low Tm/Tg ratio
 Even if a compound has low Tm/Tg ratio and categorized as "easy amorphous", the compound can still be difficult to make amorphous

Dissolution Methods and Challenges

- High energy systems prone to crystallize during dissolution
- Crystallization kinetics depend on Temperature, Sinl Condition and Media Composition
- Drug may be associated with polymer (free drug vs. bound drug)
- Higher supersaturation generally causes faster precipitation (lower recovery)

Judicious selection of dissolution condition is critical for "meaningful" interpretation of data

Amorphous Processing Technology Selection Guide

Compounds with melting point < 200°C could be suitable for HME and compounds with solubility > 50 mg/mL in low boiling point volatile solvent are suitable for SD

Pros & Cons of Amorphous Technologies

Technology	Pros	Cons
Melt Extrusion	Non-solvent based Short exposure to high temperature Modular design provides flexibility Extrudate density helps improve stability Continuous process Established scale-up and commercial feasibility	Thermal degradation Limited application for high T _m compounds Dissolution (erosion) Reduced compactability
Spray Drying	Rapid removal of solvent Established scale-up and commercial feasibility Processing occurs below Tg Applicable for low boiling point, low toxicity solvents (i.e. ethanol, acetone)	Requires adequate solubility in volatile solvent Residual solvent levels must be tested Phase separation may occur based on solubilities Low bulk density requires densification
Microprecipitation	Useful for compounds not amenable to HME or SD Provides high degree of super-saturation (ionic interaction) Modulated plasma profile due to enteric polymer Semi-continuous processing	Require ionic polymers Not suitable for weakly basic drugs Solvent extraction may require multiple washings Downstream processing required Scale-up challenges exist

t is important to select the right process for the molecule, not force a process onto the compound

If necessary consider other novel technologies (i.e. mesoporous silica, KinetiSol)

Opportunities for New Technologies

Case Study with Mesoporous Silica

 Mesoporous silica can improve dissolution rates and exposure of poorly soluble compounds

Opportunities for New Technologies Case Study with KinetiSol

Melt Extrusion

Polymer	Particle size	Temperature (°C)	Screw speed (rpm)	Recirculation time (min)	Recovery (%)	Impurities (%)
Eudragit® L100-55	Unmicronized	140	300	2	22.7±0.5	55.9
Eudragit® L100-55	Micronized	140	300	0	69.1 ± 0.5	17.3
HPMCAS	Unmicronized	170	300	2	70.9 ± 0.3	10.2
HPMCAS	Micronized	170	300	0	78.4 ± 0.1	8.9

KinetiSol

Polymer	Particle size	Speed (rpm)	Temp. (°C)	Recovery (%)	Impurities (%)
Eudragit® L100-55	Unmicronized	1,450	100	70.9±0.8	12.9
HPMCAS	Unmicronized	2,400	112	99.4±1.2	1.6

Application of new technologies offers the possibility to significantly expand manufacturing window

Future Directions

TODAY

Many industrial pipelines have solubility limitations

Limited number of approved excipients for solubility enhancement

Simple models and descriptors predict stability and performance of advanced systems

Batch manufacturing processes with a limited portfolio of techniques to prepare advanced systems

- Even today, poorly soluble compounds present major development challenges that may limit or even prevent a life saving medication from reaching the market
 - Drives substantial investments in new technologies and products

- Limitations of materials and technologies present unique opportunities for partnerships and collaborations to develop these areas
 - Will generate new models for conducting business and developing therapies

True innovation allows a molecule to become a medicine

We Innovate Healthcare

- Dr. Dharmendra Singhal Hoffmann-La Roche, Inc.
- Dr. Harpreet Sandhu Hoffmann-La Roche, Inc.
- Dr. Waseem Malick Hoffmann-La Roche, Inc.
- Dr. James DiNunzio Hoffmann-La Roche, Inc.
- Dr. Raman Iyer Hoffmann-La Roche, Inc.
- Ms. Kaoru Tominaga Hoffmann-La Roche, Inc.

BLUE SHEET RELEASED FOR PRESENTATION