1. INTRODUCTION TO QUADRO, MPT, & IDEX
2. SIZE REDUCTION OVERVIEW
3. EVOLUTION OF MILLING TECHNOLOGY
4. OVERVIEW OF COMMON MILLING TECHNOLOGIES
5. CONICAL MILLING TECHNOLOGY
6. MILL SELECTION CRITERIA
About Quadro

- History: Since 1976
- Manufacturing: 45,000 ft² (4180 m²)
- Employees: 93
- In-house Engineering
- Machining, Welding, Polishing, Electrical, Assembly
- ISO Registered, cGMP
- R&D Center
• Part of IDEX Corporation since 2007

• Member of Material Processing Technologies (MPT) platform along with
 – The Fitzpatrick Company, Illinois
 – Microfluidics, Mass.
 – Matcon, UK
Advantages of Compressed Tablets (Oral Solid Dosage)

• Accurate dosage of medicament
• Easy to transport - bulk and by patient
• Uniform final product - weight and appearance
• Usually more stable than liquid medicines
• Release rate of drug can be varied
• Mass production - simple and quick & low cost
Size reduction is an essential process requirement in the practice of Solid Dosage Preparation

The capability to produce a tight particle distribution suitable for compaction and dissolution is directly dependent on the mechanism selected for size reduction
Size Reduction Overview

Tablet Manufacturing

• Objectives
 ➢ Uniformity
 ➢ Potency
 ➢ Batch to batch reproducibility
 ➢ Damage resistance
 ➢ Lack of defects

• How
 ✓ Powders must flow
 ✓ Powders must compress
 ✓ Particles must lock together
 ✓ PSD control → Weight control
Size Reduction Overview

Common Tableting Problems

Capping

Sticking

Chipping

Breaking

Discoloring

Porosity

Tablet weight is the key to controlling hardness and friability.

Controlling tablet weights within a tight range will contribute to better tablet hardness and friability.

Key weight control factors are product uniformity in particle size & density.
Why Size Reduce

- Increase Surface Area
- Create Homogeneity
- Control Bulk Density
- Prepare Products for Post Processes

- Specifically for Tablets:
 - Increase bioavailability
 - Improve Flow
 - Reduce Segregation
 - Enhance Drying
 - Control Particle size
 - Repeatability – Batch to Batch
Size Reduction Overview

What Affects Size Reduction?

• Mechanical – Sizing Method (Type of Equipment)
• Fracture Mechanics of Particles – Types of Granules
• Properties of OSD ingredients:
 – Active Pharmaceutical Ingredient (API)
 – Excipients - Inactive “helpers”:
 – Anti-adherents/Lubricants: e.g. Magnesium Stearate
 – Binders
 – Wet: Gelatin, Starch, Sucrose, Glycol (dissolved in water or alcohol)
 – Dry: MCC, Polyethylene Glycol
 – Fillers: Lactose, Sorbitol, Calcium Carbonate
 – Flavouring/Colouring
 – Preservatives: Benzoic Acid, Cresol, Parabens, etc.
• Other physical properties – friability, toughness, abrasiveness, corrosiveness, etc.
Common Size Reduction Mechanisms

Size reduction equipment is available in many different designs, however, they all stem from four basic principles:

- **IMPACT**: particle concussion by a single force
- **COMPRESSION**: particle disintegration by two rigid forces
- **SHEAR**: produced by particle to particle interaction
- **ATTRITION**: arising from particles scraping against one another or against a rigid surface
EVOLUTION OF MILLING TECHNOLOGY

Stone Grinder

Roll Crusher

Lump Breaker

Hammer Mill

Oscillator

Tornado Mill

Conical Screen Mill

The most common method over the last 30 years

Approx. 80 Years of recorded history

Approx. 50 Years
One of the most essential process requirements in the practice of Solid Dosage Manufacturing
Common Milling Applications in the Manufacturing Process

- Dispensing – De-agglomeration and security screen
- Pre-Milling – Particle Size Distribution
- Post Granulating – De-agglomeration/Dispersion
- Dry Milling – Sizing Dried Blend
- Final Milling – Size/De-lump/Calibrate
- Reclaim - Off-Spec Tablets/Compacts
Milling

Typical Dispensing layout. Dust Free Design

Homogeneous Blend
Milling

Wet Dispersion Prior To Drying - Typical Integrated Design

High Shear Mixer/Granulator

QUADRO COMIL

Fluid Bed Dryer
Dry Milling After Fluid Bed Dryer
Typical Integrated Design c/w Vacuum Transfer
Tablet Manufacturing

Wet Granulation

Raw Materials → Conical Screen Mill for Screening / Calibration / Delumping → High Shear Mixer Granulator → Conical Screen Mill for Wet Dispersion → Drying Fluid Bed/Spray Dryer

Solvent/H₂O, etc.

Tablet Press

Storage

Conical Screen Mill for Dry Sizing → Lubricate
Fully Integrated Solid Dosage Preparation Plant (Class 100,000 Room)
Wet Milling - Direct Discharge

Comil U20

Wet Milling - Direct Discharge
Hammer Mill

- High shear mechanism
- Various In-feed designs
- Variable speed, blade & hammer assembly
- 120° discharge area
- Common output range
(6” – 12” – 30” wide screens)
Hammer Mill Cont...

Blade & Screen Types

- The blade assembly is reversible.
- The most common blade arrangement is one blunt edge and one knife edge.
- Product can be hammered or cut.
- Hardened Blades available for abrasive applications
Milling Technologies

Hammer Mill Cont…

• Hammer Mills require control feed.

• Changes in feed rates may change product retention time.
 – will effect products that can easily dense
 – increased fines & friction
 – will effect products with low melting temperature
Hammer Mill Cont...

Advantages
- Wide range in Size
- Medium to High Shear
- Vertical/Horizontal Designs
- Blades/Screens Interchangeable
- Suitable for Milling Hard Materials

Disadvantages
- High Noise Levels
- % Fines High
- Must be control-fed
- Belt Slip Common
- High Dusting
- Ventilation Requirement
- Screen change complex
- Difficult to Scale-Up
Oscillator

- This machine was commonly used in the past for low shear applications.
- Some similar designs are continuous and do not oscillate.
- Suitable for low volume manufacturing.
Oscillator Cont…

- Uses mesh screens, not perforated plates.
- Cast Body
- Discharge - tray or drum
- High Wear rate.
Oscillator Cont...

Advantages
- Gentle
- Easy to operate
- Fixed speed
- Low cost equipment
- Low Tech Functions
- Portable

Disadvantages
- Low Capacity
- Metal to Metal contact
- Non GMP design
- Not suitable for integrated processes
- Cleaning - complex
- Loss of Active material
Conical Milling

- Infeed falls into conical screen chamber
- Rotating impeller imparts vortex flow pattern to infeed material
- Centrifugal acceleration forces particulates to screen surface
- Particles are continuously delivered to “action zone” between screen and impeller
- Particles are size reduced (as fine as 150 micron) and instantly discharged through screen openings
Conical Milling

Underdriven Comil (Invented 1990)

Overdriven Comil (Invented 1976)
Conical Milling – Quadro COMIL

<table>
<thead>
<tr>
<th>Scale</th>
<th>Quadro Comil Model</th>
<th>Power</th>
<th>Standard Impeller speed</th>
<th>Scale-Up Factor</th>
<th>Tip Speed M/sec (Ft/min)</th>
<th>Screen Diameter</th>
<th>Capacity Lb/hr (kg/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>U3</td>
<td>0.246 KW (0.33 hp)</td>
<td>4500 RPM</td>
<td>0.25X</td>
<td>14.2 (2800)</td>
<td>2.55” (65mm)</td>
<td>From 3oz/100g to 220lb (100kg)</td>
</tr>
<tr>
<td></td>
<td>U5</td>
<td>0.375 KW (0.5 hp)</td>
<td>3450 RPM</td>
<td>0.5X</td>
<td>14.2 (2800)</td>
<td>3.25” (83mm)</td>
<td>425 (195)</td>
</tr>
<tr>
<td>Pilot</td>
<td>197 U10</td>
<td>1.5 KW (2.0 hp)</td>
<td>2400 RPM</td>
<td>1 X</td>
<td>14.2 (2800)</td>
<td>4.84” (123mm)</td>
<td>800-850 (360-390)</td>
</tr>
<tr>
<td>Production</td>
<td>194 U20</td>
<td>4.0 KW (5.4 hp)</td>
<td>1400 RPM</td>
<td>5 X</td>
<td>14.2 (2800)</td>
<td>8.2” (208mm)</td>
<td>3900-4250 (1750-1950)</td>
</tr>
<tr>
<td></td>
<td>196 U30</td>
<td>7.5 KW (10 hp)</td>
<td>900 RPM</td>
<td>10 X</td>
<td>14.2 (2800)</td>
<td>12.17” (309mm)</td>
<td>7800-8500 (3500-3900)</td>
</tr>
<tr>
<td>Large Production</td>
<td>198</td>
<td>15 KW (20 hp)</td>
<td>450 RPM</td>
<td>20 X</td>
<td>14.2 (2800)</td>
<td>24” (609mm)</td>
<td>15,600 (7000)</td>
</tr>
<tr>
<td></td>
<td>199</td>
<td>22 KW (30 hp)</td>
<td>360 RPM</td>
<td>40 X</td>
<td>14.2 (2800)</td>
<td>30” (761mm)</td>
<td>20,000 (9000)</td>
</tr>
</tbody>
</table>
Conical Milling – Quadro COMIL

OVERDRIVEN QUADRO® COMIL®-LAB TO PRODUCTION SCALABLE EQUIPMENT

Quadro Comils are completely customizable to meet your specific processing requirements

UNDERDRIVEN QUADRO® COMIL® – LAB TO PRODUCTION SCALABLE EQUIPMENT

Quadro Comils are completely customizable to meet your specific processing requirements
Critical Factors for Optimum Conical Milling Characteristics

Close impeller / Screen Gap

- Less fines
- High Yield
Conical Milling

Critical Milling Factors:
Close Gap
Critical Milling Factors: Close Gap

Based on Conical Screen design. Inherent benefits of the angle can be readily established as a 2:1 ratio.
Proper Tooling Selection – Screens

Effect of screen hole size on particle size distribution: generally a finer screen produces more fines and less overs.
Conical Milling

Critical Milling Factors:
Proper Tooling Selection - Screens

R - Round holes (Dry Material)
Q - Square holes (Wet Material)
S - Slotted (Pseudo Plastic)
G - Grater holes (Hard & Dry)
Conical Milling

Critical Milling Factors:
Proper Tooling Selection - Impellers

<table>
<thead>
<tr>
<th>Direction of Impeller Rotation</th>
<th>1601 (Compression)</th>
<th>1607 (Low Shear)</th>
<th>1609 (High Shear)</th>
<th>1612 (Special)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross sectional view of Impellers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacity</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fines</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Screen Pressure</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Amperage</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

1=Highest 4=Lowest
Conical Milling

Comil Impellers – Round Arms #1601

Round arms - primarily for dry sizing, some wet milling

Clockwise Rotation
Conical Milling

Comil Impellers – Rectangular Arms Positive Leading Edge #1607

Clockwise Rotation

Square Arms – “Universal” for wet milling and dry sizing
Conical Milling

Critical Milling Factors:
Screens - Apparent Hole Size

D1 = Screen hole Diameter
D2 = Apparent Hole Size
D2 < D1

V1 α 1/D2

Velocity = V0

Tangential Velocity = V1

Screen Wall
Inside

Not to Scale
Typically T/D1 = 1
• Accepted definition of Fine Milling is \(\text{psd} \) between 5 - 100 Microns and for Micronization \(\text{psd} \) between 1 - 30 micron in diameter.

• It is possible to use some of the previously discussed equipment to reduce the particle size distribution of a product down to this range (Hammer Mill) however, distribution curve can be fairly wide spread and possibly even bimodal whereas a tight \(\text{psd} \) and unimodal curve is the goal of most processes.

• Equipment commonly used for fine milling are: Pin Mills, Hammer Mills, Fine Grind, & Jet Mills
<table>
<thead>
<tr>
<th>SIZE REDUCTION CAPABILITY COMPARISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comil</td>
</tr>
<tr>
<td>F10 Fine Grind</td>
</tr>
<tr>
<td>Hammermill</td>
</tr>
<tr>
<td>Pin Mill</td>
</tr>
<tr>
<td>Jet Mill</td>
</tr>
<tr>
<td>Micron (-5 -2.5 1 5 10 25 38 45 75 125 150 180 250 300 425 600 1000)</td>
</tr>
<tr>
<td>US Mesh (- - - - - - 400 325 200 120 100 80 60 50 40 30 18)</td>
</tr>
</tbody>
</table>
Fine Milling

Quadro Fine Grind F10

1. Collector Cover
2. Product Collector Body
3. Product Hopper
4. Pneumatic Vibrator
5. Outlet container
6. Rotation Hinge
7. Milling Head
8. Screw Feeder
9. Control Panel
10. Access Panel
• Fine Grind F10 was developed to produce tailored PSD between 15 and 100 microns.

• Mobile, stand alone system (a complete plant) operates at low noise, dust heat and energy consumption.

• The operating principle;
 - control feed product into upper conical screen chamber.
 - a rotating impeller calibrates incoming material.
 - calibrated product then passes through to the lower chamber
 - a second intensifying impeller accelerates the particles.
Fine Milling
F10 Breakthroughs

- Very tight Particle Size Distribution
- Very high Product Recovery rate (>99%)
- Dust-tight
- Mobile, All-In-One unit, no ancillaries required
- Operator-friendly: Easy to clean & Low-Noise Operation
- Sanitary, GMP design; Developed specifically for Pharmaceutical API Industry
Technology Comparison – Lactose 200M

$\Delta d = D_{90} - D_{10}$
Technology Comparison – Noise

Sound Level (No load / 1m away)

<table>
<thead>
<tr>
<th></th>
<th>F10</th>
<th>Hammermill</th>
<th>Pin Mill</th>
<th>QC-197S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Level [dB]</td>
<td>70</td>
<td>110</td>
<td>90</td>
<td>70</td>
</tr>
</tbody>
</table>
Case Study – Teva, Israel

MILLING EXPERIMENTS WITH PROTOTYPES OF THE QUADRO FINE-GRIND F-10 MILL

ABSTRACT

Quadro Fine grind (F-10) is a versatile mill which is effective in the range of 20-60 μm. Three Prototypes were received for experiments in Teva's API division. Different active pharmaceutical ingredients were tested to explore the mill's performance. Based on the conclusions, the final model was built. Improvements included enlargement of the milling chamber, Control over speed and vacuum, and introduction of water cooling. It was found that the milling range covers the particle size reduction range obtained today by either single or multiple milling in hammer-mills, and can provide comparable results to those of a pin-mill.
INTRODUCTION

Teva's API division manufacturers over 200 molecules for various pharmaceutical clients. The physical properties of the products are tailor-made in order to meet various customer requests and optimize the formulation [1]. Because of the large number of products and different physical grades, it is required that mills will be versatile, i.e. capable to produce a wide spectrum of P.S.D by changing only the operating parameter.

The P.S.D range of ~20-40 microns is considered to be difficult to obtain. Larger particles can be controlled by Hammer-mills, Comils or other mechanical mills. Particles under 20 microns can be obtained by fluid-jet mills. However, only few mills can obtain narrow P.S.D in this range without having too many fines or oversized particles. One of these mills is the Pinmill [2]. Few main drawbacks of this mill are the heat generation and the very narrow gap that make it prone to blockages. Therefore, a great interest was found in the Quadro Fine grind (F-10). Two prototypes were tested, and based on Teva's findings, the final version was constructed and successfully applied in routine production.
Case Study – Teva, Israel

Teva Paper at CHoPS Conference Italy, Aug 2006
“Development of the F10 in Teva, API”

Paper Synopsis

Goal: PSD 20 to 40 µm range

Previous: Pin Mill. Heat changed product characteristics. Narrow gap between pins prone to blockage (9 hrs to clean vs. F10 at 1 hour)

Validation: 6+ API’s validated with F10
Case Study – Teva, Israel

<table>
<thead>
<tr>
<th>Customer Requirement</th>
<th>Observations & Discussion:</th>
<th>Material “A”: F10 vs. Pin Mill / Hammermill</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10 comparison versus Pin Mill and Hammermill</td>
<td>Material A</td>
<td>D_{10} (µm)</td>
</tr>
<tr>
<td>Unmilled</td>
<td>60</td>
<td>180</td>
</tr>
<tr>
<td>Pin Mill</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Hammermill Double Pass</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>F10 Single Pass</td>
<td>1.6</td>
<td>11.9</td>
</tr>
</tbody>
</table>

1. PSD Comparison between F10 versus Pin Mill and/or Hammermill results provided equal or better PSD distribution.
2. Material “A” is a proprietary pharmaceutical API
Case Study – Teva, Israel

<table>
<thead>
<tr>
<th>Customer Requirement</th>
<th>Observations & Discussion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10 comparison versus Hammermill</td>
<td>Material “B”: F10 vs. Hammermill</td>
</tr>
<tr>
<td></td>
<td>Material B</td>
</tr>
<tr>
<td>Unmilled</td>
<td>12.73</td>
</tr>
<tr>
<td>Hammermill</td>
<td>8</td>
</tr>
<tr>
<td>F10</td>
<td>3.44</td>
</tr>
</tbody>
</table>

1. PSD Comparison between F10 versus Hammermill results provided better PSD distribution.
2. Comil was also tested: D90 180 µm, D50 70 µm, D10 10 µm
3. Material “B” is a proprietary pharmaceutical API
Case Study – Teva, Israel

<table>
<thead>
<tr>
<th>Customer Requirement</th>
<th>Observations & Discussion:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Material “C”: F10 vs. Hammermill</td>
</tr>
<tr>
<td></td>
<td>Material C</td>
</tr>
<tr>
<td>Unmilled</td>
<td>24.33</td>
</tr>
<tr>
<td>Hammermill</td>
<td>7.96</td>
</tr>
<tr>
<td>F10</td>
<td>7.59</td>
</tr>
</tbody>
</table>

1. PSD Comparison between F10 versus Hammermill results provided equal or better PSD distribution.

2. Material “C” is a proprietary pharmaceutical API
Case Study – Apotex, Canada

Customer using Hammermill: 4-5 passes for $d_{90} = 70 \, \mu\text{m}$

F10: $d_{90} = 53.6 \, \mu\text{m}$ (single pass) 7200RPM and $20.4 \, \mu\text{m}$ 8400RPM

<table>
<thead>
<tr>
<th>Alendronate Sodium Trihydrate</th>
<th>Impeller Speed = 7200 rpm</th>
<th>Impeller Speed = 8400 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run 1</td>
<td>Run 1.1</td>
</tr>
<tr>
<td>PSD</td>
<td>Starting Material</td>
<td>PSD Run 1</td>
</tr>
<tr>
<td>$D(v,0.1)$</td>
<td>8.847 µm</td>
<td>3.503 µm</td>
</tr>
<tr>
<td>$D(v,0.5)$</td>
<td>49.214 µm</td>
<td>18.03 µm</td>
</tr>
<tr>
<td>$D(v,0.9)$</td>
<td>262.787 µm</td>
<td>53.601 µm</td>
</tr>
</tbody>
</table>

First Pass

Second Pass
Fine Milling

Typical F10 PSD Graph – MCC

Specific Surface Area: 0.275 m²/g
Surface Weighted Mean D[3,2]: 21.805 um
Vol. Weighted Mean D[4,3]: 42.411 um

d(0.1): 10.560 um

d(0.5): 31.714 um
d(0.9): 89.907 um

F10 was run at standard speed (7200RPM), 045R screen;
Malvern Mastersizer 2000 Results
Jet Mills & Micronizers
• The principle of micronizing fluid energy mills (also known as jet mills or spiral mills) is the size reduction of particles through inter-particulate collisions combined with surface collisions due to acceleration of product.

• These mills use accelerated fluid streams (normally compressed air, super heated steam or inert gas) to generate a high speed vortex which the particles are introduced into.

• The vacuum created by a venturi-nozzle propels the product throughout the milling chamber, forcing particles to collide with themselves as well as the chamber walls.
Key Components and attributes that affect micronization:

- **Nozzle design and direction of air jets**
- **Efficiency of air compressors**
- **Efficiency of filters and separators**
Mill Selection Criteria

Properties of Feed Material:
- Size
- Shape
- Moisture content
- Physical and chemical properties
- Temperature sensitivity
- Grindability

Final Product Specification:
- Size
- Particle size distribution
- Shape

Versatility of Operation:
- Change of speed and screens
- Safety features
Mill Selection Criteria

Scale-Up:
- Capacity of the mill
- Production rate requirements

Dust Control:
- Loss of costly drugs
- Health hazards
- Contamination of plant
- Safety

Sanitation:
- Ease of cleaning and sterilization
- Design and material finish

Auxiliary Equipment:
- Cooling system
- Dust collectors
- Forced feeding
Mill Selection Criteria

Economical Factors:
- Equipment cost
- Power consumption
- Space occupied
- Labor cost
Ability to handle dust explosions

General guidelines for inert milling:
Minimum Ignition Energy: (ref. BS5958 Part 1; 1991)

- **< 500 mJ** Low sensitivity to ignition. Solution: *Earth plant.*
- **< 100 mJ** Recommended at this point that customer seek expert advice. Common solution: *Earth personnel.*
- **< 25 mJ** Majority of incidents occur when MIE is at or below this level. Solution: *Inert with nitrogen.*
- **< 10 mJ** High sensitivity to ignition. Solution: *Inert with nitrogen and monitor allowable oxygen levels.*
Thank you