FH ANNUAL PTI TRAINING PROGRAM FORMULATION AND PROCESS DEVELOPMENT FOR ORAL DOSAGE FORMS A 5-Day Modular and Case Study Oriented Training Program

AUGUST 27-31, 2012 - NASSAU INN - PRINCETON - NJ - USA

Historical Location, Reputable Speakers & Innovative Program

Module 1: Crystal Forms of API

Part la.

STRUCTURES OF CRYSTALLINE SOLIDS

Harry G. Brittain Center for Pharmaceutical Physics 10 Charles Road Milford, NJ 08848

Crystal Lattice Structure (1)

- An ideal crystal is constructed by the infinite regular repetition in space of identical structural units.
 - For crystals of monatomic elements, the basic structural elements are the individual atoms.
 - For crystals of organic molecules, the basic structural unit will contain one or molecules.

Crystal Lattice Structure (2)

A lattice is defined as a regular periodic arrangement of points in space, and contains all of the translational repetitions that define a given pattern.

The crystal structure is formed when a fundamental unit is attached identically to each lattice point, and extended along each crystal direction through translation.

Crystal Lattice Structure (3)

Rows, nets, and lattices:

Crystal Lattice Structure (4)

y-axis projection of aniline hydrochloride

Crystal Lattice Structure (5)

The crystal structure is generated through the periodic repetition (by the three unit translations) of matter contained within the volume of the unit cell.

Crystal Lattice Structure (6)

- The unit cell is defined by the lengths (*a*, *b*, and *c*) of the crystal axes, and by the angles (α, β, and γ) between these.
- The position of any face on the crystal is fixed by its intercepts on the axes as (HKL), also known as the Miller index of that face.

Crystal Lattice Structure (7)

- > α = angle between the *b* and *c*-axes.
- > β = angle between the *a* and *c*-axes.
- > γ = angle between the *a* and *b*-axes.
- > H = *a*-axis intercept.
- > K = *b*-axis intercept.
- > L = *c*-axis intercept.

Crystal Lattice Structure (8)

Families of planes in a given lattice:

Crystal Lattice Structure (9)

While there are seven types of primitive unit cells that represent unique combinations of axis lengths and angles (these unit cell characteristics define the seven crystal classes), only three classes are of importance to drug substances having pharmaceutical importance.

Crystal Lattice Structure (14)

Orthorhombic system

4 lattice types possible

Crystal Lattice Structure (15)

Orthorhombic system lattice types:

Crystal Lattice Structure (16)

Monoclinic system $a \neq b \neq c$ $\alpha = 90^{\circ}$ $\beta \neq 90^{\circ}$ $\gamma = 90^{\circ}$ 2 lattice types possible

Crystal Lattice Structure (17)

Monoclinic system lattice types:

SIMPLE BAS MONOCLINIC (P) MC

BASE-CENTERED MONOCLINIC (P)

Crystal Lattice Structure (18)

Triclinic system

 $a \neq b \neq c$

 $\alpha \neq 90^{\circ}$ $\beta \neq 90^{\circ}$

1 lattice type possible

Molecular Crystals (1)

- Ordinary packing mechanisms dominate, with the structures being defined by the most favorable closepacking possible.
- The only forces of attraction between molecules are the van der Waals forces.
- The weak nature of these attractive forces leads to existence of only modest degrees of lattice energy.

Pyrene (1)

Pyrene crystallizes in the P2₁/a space group and contains four molecules per unit cell.

<i>a</i> = 13.60 Å	$\alpha = 90^{\circ}$
<i>b</i> = 9.24 Å	β = 100.2°
<i>c</i> = 8.37 Å	$\gamma = 90^{\circ}$

Location of atoms projected on the (010) plane of pyrene.

Pyrene (3)

The pyrene crystal structure, viewed along the *c*-axis.

Hydrogen-Bonded Structures

- For compounds containing electronegative groups with replaceable hydrogen atoms, a more compact type of molecular grouping is observed.
- Such crystals are generally more brittle, and have higher melting points than molecular crystals.
- These properties signify the existence of higher degrees of lattice energy.

Resorcinol (1)

- Resorcinol is characterized by the existence of two polymorphic forms that can be interconverted about a transition temperature of 75°C. The form that is more stable at the higher temperature has the larger crystal density.
 - > Proc. Royal Soc.,
 - <u>A157</u>, 79 (1936);
 - > <u>A167</u>, 122 (1938)

Resorcinol (2)

 α -Form Orthorhombic P*na* Z = 4*a* =10.53 Å b = 9.53 Åc = 5.66 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$

β- Form Orthorhombic Pna Z = 4*a* = 7.91 Å *b* = 12.57 Å c = 5.50 Å $\alpha = 90^{\circ}$ β **= 90°** $\gamma = 90^{\circ}$

Resorcinol (3)

- Crystal structure of the α-phase as deduced from the electron density contour diagram.
- The hydrogen bonding pattern promotes the open structure.

Resorcinol (4)

- Crystal structure of the
 β-phase as deduced
 from the electron density
 contour diagram.
- The weaker hydrogen
 bonds of the high
 temperature form cause
 the open structure to
 collapse.

Resorcinol (5)

α-phase

(001) plane

β -phase

Solvatomorphs (1)

- In most crystalline solvatomorphic structures, the included hydrate/solvate molecule(s) occupy regular positions within the lattice with respect to the chemical entity.
- The hydrate/solvate molecule(s) included in the structure facilitate crystal growth by supplying additional intermolecular bridging that enhances the lattice energy.

Solvatomorphs (2)

- For regular crystalline hydrates or solvates, there will be a specific stoichiometry existing between the hydrate/solvate molecules and the chemical entity.
- For certain solids whose structures contain tunnels lined by hydrophilic sites, the existence of less sitespecific channel solvent is possible.

Isolated Site Hydrate

Packing Diagram for Nitrofurantoin monohydrate

[1] Cambridge Structural Database (Nov. 2003)

Channel Hydrate

Packing Diagram for Theophylline monohydrate

[1] Cambridge Structural Database (Nov. 2003)

Ion Coordinated Hydrate

Packing Diagram for Calteridol tetra-decahydrate

[1] Cambridge Structural Database (Nov. 2003)

Ampicillin (1)

- Ampicillin is known to exist both as an anhydrate phase and as a trihydrate.
 - > Trihydrate:
 - Nature, 220, 168 (1968)
 - > Anhydrate:
 - Acta Cryst., B32, 2279 (1976)

Ampicillin (2)

Anhydrate Monoclinic P2₁ Z = 2 *a* = 12.32 Å b = 6.18 Å*c* = 11.90 Å $\alpha = 90^{\circ}$ $\beta = 114.3^{\circ}$ $\gamma = 90^{\circ}$

Trihydrate Orthorhombic $P2_{1}2_{1}2_{1}$ Z = 4*a* = 15.490 Å *b* = 18.891 Å c = 6.662 Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$

Ampicillin (3)

Trihydrate phase

Projection of the structure down the *c*-axis.

Ampicillin (4)

Trihydrate phase

Projection of the structure down the *a*-axis.

Ampicillin (5)

Anhydrate

Trihydrate

(along *b*-axis)

(along *c*-axis)
Module 1: Crystal Forms of API

Part lb.

X-RAY POWDER DIFFRACTION

Harry G. Brittain Center for Pharmaceutical Physics 10 Charles Road Milford, NJ 08848

X-Ray Powder Diffraction (1)

- Although the full determination of a crystal structure provides the greatest degree of solidstate comprehension, this technique is not suitable for routine analysis.
- Since most bulk drug substances are obtained as crystalline powders, the technique of x-ray powder diffraction (XRPD) is a much more useful method for the study of these materials.

X-Ray Powder Diffraction (2)

A correctly prepared sample will present an entirely random selection of all possible crystal faces at the powder interface.

X-Ray Powder Diffraction (3)

Orthorhombic class:

 $1/d^{2} = [h^{2}/a^{2}] + [k^{2}/b^{2}] + [l^{2}/c^{2}]$ V = abc

Monoclinic class:

 $1 / d^{2} = [h^{2} / a^{2} \sin^{2} \beta] + [k^{2} / b^{2}] + [l^{2} / c^{2} \sin^{2} \beta] - [(2hl \cos \beta) / ac \sin^{2} \beta]$

 $V = abc \sin \beta$

X-Ray Powder Diffraction (4)

- Diffraction off the ensemble of surfaces yields information on all possible atomic spacings in the crystal lattice.
- Bragg's Law is used to interpret the data:

 $n \lambda = 2 d \sin \theta$

Automatic Diffractometer Method

Automatic diffractometers obtain the XRPD of a sample through measurement of the scattering off the surface of a powder slab.

Preferential Orientation (1)

- Since almost all organic crystals are anisotropic in nature, their morphology can influence the relative intensities measured for various diffractions.
- If the powder slab of a given sample is processed in such a way that a statistically random sampling of crystal planes is not obtained, the observed powder pattern will over-emphasize the selected planes.

Preferential Orientation (2)

- If the microscopic examination of a sample indicates a plate-like morphology, the XRPD of the sample should be obtained a second time after performance of mild grinding or milling.
- The degree of particle size reduction must not lead to a reduction in the degree of crystallinity.

Powder Diffraction: Applications

Conventional XRPD

- Phase identity of materials
- Crystallographic properties (class, a, b, c)
- Degree of crystallinity
- Primary determinant of polymorphism
- Phase composition of mixtures
- Variable Temperature XRPD
 - Structural interpretation for thermal events
 - Accelerated stability studies

Phase Identification (1)

The USP general chapter on x-ray diffraction (<941>) states that identity is established if the scattering angles of the ten strongest reflections obtained for an analyte agree to within ±0.20° 2-θ with that of the reference material, and that the relative intensities of these reflections do not vary by more than 20%.

Phase Identification (2)

* XRPD of benzoic acid:

Phase Identification (3)

Data obtained for benzoic acid:

Scattering Angle (degrees 2-θ)	d-spacing (Å)	Relative Intensity (I/I _o)
17.2	5.1482	100
8.13	10.8662	· 95
16.29	5.4368	56
23.81	3.7334	27
25.85	3.4437	25
19.09	4.6452	21
27.77	3.2099	17
30.13	2.9636	16
34.85	2.5723	12
24.53	3.626	9

Phase Identification (4)

Acceptability criteria for benzoic acid:

d-spacing (Å)	Lower Limit of Scattering Angle (deg. 2- 0)	Reference Scattering Angle (deg. 2-0)	Upper Limit of Scattering Angle (deg. 2-0)	Lower Limit of Relative Intensity (I/I _o)	Reference Relative Intensity (I/I _o)	Upper Limit of Relative Intensity (I/I₀)
5.1482	17.00	17.20	17.40	100	100	100
10.8662	7.93	8.13	8.33	76	95	114
5.4368	16.09	16.29	16.49	44.8	56	67.2
3.7334	23.61	23.81	24.01	21.6	27	32.4
3.4437	25.65	25.85	26.05	20.0	25	30.0
4.6452	18.89	19.09	19.29	16.8	21	25.2
3.2099	27.57	27.77	27.97	13.6	17	20.4
2.9636	29.93	30.13	30.33	12.8	16	19.2
2.5723	34.65	34.85	35.05	9.6	12	14.4
3.6260	24.33	24.53	24.73	7.2	9	10.8

Crystallographic Properties (8)

* The crystal structure of brinzolamide has been determined, and the derived cell parameters used to index its powder pattern. * Anal. Prof. Drug. Sub. Excip., <u>26</u>, 47 (1999) Monoclinic (P2₁), Z = 4a = 9.686 Å $\alpha = 90^{\circ}$ b = 8.792 Å $\beta = 92.33^{\circ}$ c = 10.085 Å $\gamma = 90^{\circ}$

Crystallographic Properties (9)

Indexed XRPD data for brinzolamide

Scatter Angle 2θ (deg.)	D Spacing (Å)	Relative Intensity (%)	Miller Indices			
			h	k	l	
8.771	10.073	7.0	0	0	1	
9.112	9.6971	4.5	1	0	0	
12.422	7.1198	100.0	-1	0	1	
13.371	6.6166	6.3	0	1	1	
16.020	5.5279	7.2	-1	1	1	
16.412	5.3965	16.8	1	1	1	
18.329	4.8364	18.5	2	0	0	
19.541	4.5391	6.8	-1	0	2	
20.168	4.425	27.7	-2	0	1	
			1	0	2	
			0	2	0	
			0	1	2	

Crystallographic Properties (10)

- When the cell constants are now previously known from the single crystal structure, the powder pattern can be indexed using:
 - Trial and error
 - Graphical techniques
- The accuracy of the indexing is directly dependent on the quality of the XRPD data.

Evaluation of Polymorphism (1)

- Since the existence of polymorphism (or of solvatomorphism) is a crystallographic phenomenon, XRD techniques are the primary methods for determination.
- Owing to its ease of data acquisition, XRPD is particularly useful as a screening technique for batch characterization.

Evaluation of Polymorphism (2)

- Form-A of fosinopril sodium is obtained through slow crystallization, and the identity of the solvent does not affect the crystal type.
- Form-B can only obtained by flash evaporation from alcoholic solutions. Large surface areas within the crystallizing vessel are required to obtain phase pure Form-B material.

♦ J. Pharm. Biomed. Anal., <u>11</u>, 1063 (1993).

Evaluation of Polymorphism (3)

Fosinopril Na, Form A

Fosinopril Na, Form B

Evaluation of Polymorphism (4)

XRPD of the two forms of piroxicam pivalate. J. Pharm. Sci., <u>87</u>, 333 (1998)

Evaluation of Polymorphism (5)

XRPD of the three forms of famotidine. *Int. J. Pharm.*, <u>149</u>, 227 (1997)

Evaluation of Polymorphism (6)

XRPD of the (A) anhydrate and (B) trihydrate phases of ampicillin.

Thermal XRPD (1)

- When XRPD is conducted on a heatable stage, the nature of thermally induced transitions noted in a DSC or TG thermogram can be studied.
- The technique is most appropriately applied to the study of:
 - Phase transitions
 - Desolvations

Thermal XRPD (2)

XRPD of chlordiazepoxide showing the phase change from Form-II to Form I.

✤ J. Pharm. Sci., <u>87</u>, 655 (1998)

Thermal XRPD (3)

 XRPD of lomeridine HCI, showing the partial Form-II to Form I phase change prior to melting.
J. Pharm. Sci., <u>85</u>, 761 (1996)

Summary (1)

- XRPD represents the methodology of choice for the crystallographic characterization of drug substances produced on a routine, batch-type basis.
- Properly prepared samples yield powder patterns that contain a scattering peak for each crystal plane / face, and therefore constitute an identification test for a given crystalline phase.

Summary (2)

- When the data are of suitable quality, XRPD can be used to deduce details of the unit cell and the crystal structure.
- With the generation of appropriate calibration data, XRPD can be used as a means to deduce the:
 - Degree of crystallinity in a given sample.
 - Composition of a physically heterogeneous mixture.

Summary (3)

- Since polymorphism and solvatomorphism are crystallographic occurrences, XRPD will always be the primary determinant of the existence of such phenomena.
- Variable temperature XRPD is a valuable tool to understand thermally induced reactions, and to characterize materials during the conduct of stability studies.

Module 1: Crystal Forms of API

Part Ic.

THERMAL METHODS OF ANALYSIS

Harry G. Brittain Center for Pharmaceutical Physics 10 Charles Road Milford, NJ 08848

Defining Characteristics of Thermal Analysis Methods

- The physical property and the sample temperature are measured continuously.
- Source of the second second
- The temperature of the sample is altered at a predetermined rate.

Reaction Types

Endothermic

Melting, boiling, sublimation, vaporization, desolvation, phase transitions, chemical degradation.

Exothermic

Crystallization, oxidative decomposition.

Differential Thermal Analysis (1)

- The technique is mostly used for the qualitative identification of thermally induced chemical and physical reactions, and for the determination of the temperatures associated with these processes.
- Typical reactions studies include phase transformations, structural conversions, desolvation reactions, and decomposition reactions.

Differential Thermal Analysis (2)

Differential Scanning Calorimetry (1)

- DSC analysis entails a measurement of the differential heat capacity of the sample.
- The sample and reference are maintained at the same temperature, and the heat flow required to keep the equality in temperature is measured.
- Consequently, DSC thermograms are plotted as the differential rate of heating (*e.g.*, J/sec) against temperature.

Differential Scanning Calorimetry (2)

- As with DTA, DSC is used for the identification of thermally induced chemical and physical reactions, and for the determination of the temperatures associated with these processes.
- The area under a DSC peak is directly proportional to the heat absorbed or evolved by the thermal event, and integration of the peak area yields the heat of that reaction.
- When a compound is found to melt without decomposition, DSC analysis can be used to determine the absolute purity.

Differential Scanning Calorimetry (3)

Power-compensation DSC:

Differential Scanning Calorimetry (4)

- In power-compensated DSC, the sample and reference materials are kept at the same temperature by the use of individualized heating elements.
- The observable parameter recorded is the difference in power inputs to the two heaters.

Differential Scanning Calorimetry (5)

✤ Heat-flux DSC:

Differential Scanning Calorimetry (6)

- In heat-flux DSC, one monitors the heat differential between the sample and reference materials through the use of a heat flux sensor.
- The heat-flux methodology is quite similar to that used to obtain DTA thermograms.

Differential Scanning Calorimetry (8)

- DSC thermogram of lactose monohydrate.
- The dehydration of lattice water from a strong crystal structure yields sharp thermal features.

Differential Scanning Calorimetry (9)

- DSC thermogram of ampicillin trihydrate.
- The dehydration of lattice water from a weak crystal structure yields broad thermal features.

Differential Scanning Calorimetry (10)

- DSC thermograms of proscar, form II (upper trace) and form I (lower trace). The latter thermogram shows the IXII phase transformation prior to the melting transition.
 - J.A. McCauley, unpublished results.

Differential Scanning Calorimetry (11)

DSC thermogram of 2,4dinitrophenyl-2,4dinitrobenzoate, showing recrystallization of form IV to form III (T1), melting of forms III and II (T2 and T4), solidification of the melts produced by T2 and T4 (t3 and T5), and melting of form I (T6).

✤ Microchim. Acta, II, 107 (1987).

Differential Scanning Calorimetry (12)

- DSC thermograms of piretanide, as recrystallized from (a) *t*-butanol, (b) *n*butanol, (c) *i*-propanol, and (d) *N*,*N*-dimethyl formamide.
 - ✤ Chem. Pharm. Bull., 42, 1123 (1994).

Thermogravimetry (1)

- TG is a measurement of the thermally induced weight loss of a material as a function of the applied temperature.
- Consequently, TG analysis is restricted to studies involving either a gain or loss in sample mass, such as desolvation decomposition reactions.
- TG is a highly useful adjunct to either DTA or DSC in that it permits an easy differentiation between endotherms that involve loss of mass and those that do not.

Thermogravimetry (2)

Thermogravimetry (3)

When a solid is capable of decomposing by means of discrete sequential reactions, the magnitude of each step can be separately determined.

Thermogravimetry (4)

TG thermograms associated with the dehydration of two dihydrate polymorphs of an experimental compound.

Thermogravimetry (5)

When considering a series of related compounds, the higher the decomposition temperature the more stable a compound is considered to be.

Thermogravimetry (6)

TG of ampicillin anhydrate: the onset of oxidative degradation is approximately 215°C.

Thermogravimetry (7)

TG of ampicillin trihydrate: the onset of oxidative degradation is approximately 190°C.

Module 1: Crystal Forms of API

Part Id. USE OF SOLID-STATE SPECTROSCOPY FOR THE CHARACTERIZATION OF POLYMORPHS AND SOLVATOMORPHS

Harry G. Brittain Center for Pharmaceutical Physics 10 Charles Road Milford, NJ 08848

Spectroscopic Properties of Polymorphs (1)

When the differing crystal structures of polymorphs or solvatomorphs translates into a perturbation of the pattern of molecular vibrations, then the techniques of vibrational spectroscopy (*i.e.*, infrared absorption or Raman scattering) can be used to study the solids.

Spectroscopic Properties of Polymorphs (2)

When the differing crystal structures of polymorphs or solvatomorphs translates into a perturbation of the chemical environments of the component nuclei, then the technique of nuclear magnetic resonance (usually ¹³C-NMR) can be used to study the solids.

Spectroscopic Properties of Polymorphs (3)

When the differing crystal structures of polymorphs or solvatomorphs translates into an alteration of molecular orbital energies, then technique associated with ultraviolet or visible spectroscopy (*i.e.*, UV/VIS reflectance or fluorescence spectroscopy) can be used to study the solids.

Overview

Solid-State Vibrational Spectroscopy (fundamental transitions)

- a. Infrared Absorption Spectroscopy
- b. Raman Spectroscopy

Spectroscopy of overtone vibrational transitions (Near-Infrared Spectroscopy).

Solid-State Nuclear Magnetic Resonance Spectrometry Spectroscopic transitions among states whose wave functions are independent of electronic character, but are defined as having predominantly nuclear motion properties (states of molecular vibration).

- > IR absorption spectroscopy (EMR = IR or NIR)
- Raman spectroscopy (a scattering technique using EMR = UV, VIS, or NIR)
- Since the energy levels of vibrational states are strongly affected by details of chemical bonding, these spectroscopic transitions are also very useful for the study of molecular properties.

Infrared Absorption Spectroscopy (1)

Measurement of IR spectra in the solid state requires the simultaneous use of Fourier Transform detection methodology and special sample measurement techniques (DRIFTS or ATR).

Far IR	=	10	to	400 cm ⁻¹
Mid IR	=	400	to	4000 cm ⁻¹
Near IR	=	4000	to	20,000 cm ⁻¹

Infrared Absorption Spectroscopy (2)

Infrared Absorption Spectroscopy (3)

Comparison of carbonyl stretching frequencies in the mid-IR region

Assignment	Form-A	Form-B
C-15	1759 cm^{-1}	1753 cm ⁻¹
C-6	1622 cm^{-1}	1621 cm ⁻¹
C-1	1600 cm ⁻¹	1598 cm ⁻¹

Infrared Absorption Spectroscopy (4)

Raman Spectroscopy (1)

- In Raman spectroscopy, one measures the inelastic scattering of radiation by a non-absorbing medium.
- The scattered light can be detected at lower (Stokes lines) and higher (anti-Stokes lines) frequencies relative to that of the incident (or elastically scattered) light.
- The energy displacements relative to the energy of the incident beam correspond to the vibrational transition frequencies of the scattering molecule.

Raman Spectroscopy (2)

- The Raman effect originates from the interaction of the oscillating induced polarization or dipole moment of the molecule with the electric field vector of the incident radiation.
- Although both infrared absorption and Raman scattering both yield information on the energies of the same vibrational motion, different selection rules govern the band intensities for each type of spectroscopy.

Raman Spectroscopy (3)

- Symmetric vibrations and nonpolar groups yield the most intense Raman scattering bands, while antisymmetric vibrations and polar groups yield the most intense infrared absorption bands.
- Raman scattering bands are usually sharp, and consequently Raman spectra often contain significantly less spectral overlap relative to infrared absorption spectra.

Raman Spectroscopy (4)

Raman (upper trace) and IR absorption (lower trace) spectra of flucloxacillin.

Spectrochim. Acta, <u>49A</u>, 809 (1993)

Raman Spectroscopy (5)

Raman spectra for fluconazole, Forms A and B. *J. Pharm. Sci.*, <u>84</u>, 1438 (1995)

Raman Spectroscopy (6)

Raman spectra for fluconazole, Forms A and B.

J. Pharm. Sci., 84, 1438 (1995)

Solid-State NMR (1)

- The use of conventional solution-phase NMR data acquisition techniques on solid samples yields only featureless spectra.
- The broadening of resonance lines is due to dipolar interactions and chemical shift anisotropies which cannot be averaged out in the solid state.

Solid-State NMR (5)

Cross-Polarization / Magic-Angle Spinning:

- The simultaneous use of magic-angle spinning and cross-polarization (CP/MAS) permits the recording of high-resolution NMR spectra for solid samples.
- The spectrum of any NMR active nucleus can be obtained through suitably designed CP/MAS experiments.

Solid-State NMR (6)

Solid-State NMR (7)

Solid-State NMR (8)

C - H Aliphatic Region: C-17 Form-A = 7.9 ppm Form-B = 11.8 ppm C-14, C-14' Form-A = 19.6, 20.7 ppm Form-B = 14.9, 16.2 ppm
Solid-State NMR (9)

C - C Aliphatic Region: ≻ C-5: Form-A = 52.2 ppm Form-B = 52.4 ppm \succ > C-2: Form-A = 63.4 ppm Form-B = 63.8 ppm \geq > C-21, C-19, C-19', C20, C20': Form-A = 125.2 ppm Fosinopril Sodium: \succ Form-B = 126.6 ppm \succ J. Pharm. Biomed. ➤ C-18: Form-A = 142.8 ppm Anal., <u>11</u>, 1063 Form-B = 142.7 ppm(1993) \succ

Solid-State NMR (10)

Carbonyl Region:

C-6: Form-A = 164.5 ppm
 Form-B = 164.3 ppm
 C-15: Form-A = 171.5 ppm
 Form-B = 172.6 ppm
 C-1: Form-A = 178.0 ppm
 Form-B = 176.4 ppm

Fosinopril Sodium: *J. Pharm. Biomed. Anal.*, <u>11</u>, 1063 (1993)

Module 1: Crystal Forms of API

Part le.

ISSUES ASSOCIATED WITH SCIENTIFIC PHARMACEUTICAL DEVELOPMENT

Harry G. Brittain Center for Pharmaceutical Physics 10 Charles Road Milford, NJ 08848

Polymorphism

- Defined as the ability as the ability of a substance to exist in two or more crystalline phases that differ in the arrangement and/or conformation of the molecules in the crystal lattice.
- The elemental analyses of a polymorphic pair are identical.

Solvatomorphism

- Defined as the ability as the ability of a substance to exist in two or more crystalline phases that may differ in the arrangement and/or conformation of the molecules in the crystal lattice, and which contain differing numbers of solvate molecules.
- The elemental analyses of a solvatomorphic pair cannot be identical.

Crystal Forms

- It appears that FDA does not differentiate between polymorphs and solvatomorphs.
- FDA considers these to be differing crystal forms of the same compound, and treats them equally as requiring characterization methodology.

Importance of Crystal Forms to the Pharmaceutical Industry

- > Polymorphs or solvatomorphs can have different:
 - > solubility
 - stability
 - > processing characteristics
- Different crystal forms are most likely to be uncovered during the latter stages of development.

Why care about the crystal form of a new chemical entity?

Only one crystal form can have the lowest free energy at a given temperature and pressure.

- The most stable crystal form has the lowest:
 vapor pressure
 - > solubility
 - intrinsic dissolution
 - bioavailability

Relative Stability of the Unique Forms (1)

- When the existence of more than one crystalline form is demonstrated, the ensemble of information available after the performance of the work described in the previous sections usually permits a determination of the relative stability order of the polymorphs and solvatomorphs.
- This is especially true if vapor pressure and/or solubility studies have been performed.

Relative Stability of the Unique Forms (2)

Enantiotropy

- One polymorph is stable within a defined temperature/pressure region, while the other is stable within a different temperature/pressure region.
- Enantiotropic pairs will undergo a reversible interconversion at the transition point.

Relative Stability of the Unique Forms (3)

Monotropy

Only one polymorph is stable over all temperatures and pressures below the melting point. The other form is always metastable with respect to the stable form.

The metastable phase will undergo an irreversible interconversion to the stable phase at the transition point.

Relative Stability of the Unique Forms (4)

Gay-Lussac's Observation

During crystallization, metastable forms are ordinarily obtained first. If possible, these will transform into a stable form.

Ostwald's Step Rule

In all processes, it is not the most stable state with the lowest amount of free energy that is initially formed, but the state lying nearest in free energy to the original state.

Relative Stability of the Unique Forms (5)

Solubility

- The more stable is a crystalline form at some temperature, the less soluble it will be in a given solvent with respect to the other forms.
- The equilibrium solubility evaluation must be performed in at least two solvents.
- Whenever possible, the solubility of each form should be obtained as a function of temperature and fit to the Clausius-Claperon equation.

Relative Stability of the Unique Forms (6)

> Ostwald Ripening Experiments

- Solids of two unique forms of the DS are suspended in a saturated solution of the DS. This can be performed either in a bulk solution or in the well of a microscope slide.
- > After equilibrium is attained, only one form will be left as a suspended solid in the dispersion.
- The form that remains will be the more stable of the two forms originally suspended.

Decision Tree Development on Polymorphism in ANDA's

- A process should be developed for evaluating when and how polymorphs of drug substances in ANDA's should be monitored and controlled
 - > ICH Guidance Q6A decision trees on polymorphism
 - The Biopharmaceutics Classification System (BCS)

Decision Trees (1)

Decision Trees (2)

Decision Trees (3)

Guidance

- Whenever possible, it is recommended that the most stable crystalline phase of the drug substance be chosen as the commercial form.
- This choice should lead to the most robust primary process for manufacture of the drug substance.

Any Questions?

Module 1: Crystal Forms of API

Part 2.

ROLE OF WATER IN SOLID-STATE STABILITY

Harry G. Brittain

Center for Pharmaceutical Physics 10 Charles Road Milford, NJ 08848 Lynne S. Taylor

Department of Industrial and Physical Pharmacy/ Purdue University West Lafayette, IN

Outline

Mechanisms of water-solid interaction

Sources of water during processing and storage

□ Impact of water on chemical and physical stability

Processing and water-solid interactions

Conclusions

Introduction

Residual water is commonly associated with pharmaceutical systems

The amount of water (weight percent) ranges from fractions of a percent to up to 25%

Solids interact with water by different mechanisms. e.g. Sodium Chloride vs. Starch

Water vapor sorption isotherms

Properties of Water

Special characteristics make water capable of interacting with many pharmaceutical solids in different modes:

- □ Its small size (29.92 Å³)
- Its capability of forming hydrogen bonds and hydrogen bond networks
 - Ubiquitous hydrogen bonding is a result of hydrogen bond donor and acceptor capabilities
 - Hydrogen bonding can occur with other water molecules, with functional groups of drug molecule, or to anions

Water and Pharmaceutical Solids

To understand different water-solid interactions and their potential impact on chemical and physical stability, we need to answer the following questions:

- ➤ How much water is associated with solid?
- > Where is the water located?
- > What is the physical chemical state of the water and the solid?
- How does the presence of such amount of water affect physicochemical properties of the solid?

Vapor Sorption Isotherms

The most fundamental manner of demonstrating water-solid interaction is using "Vapor Sorption Isotherms"

Typical vapor sorption isotherm: PVP [1] [1] Oksanen, C.A., PhD. Thesis 1992)

Mechanisms of water-solid interaction

Adsorption

Capillary condensation

Deliquescence

□ Absorption:

- Disordered phases (Amorphous)
- > Crystal hydrate formation

<u>Ad</u>sorption

- Process where molecules of a gas contact and adhere to a solid surface
- Crystalline solids with hydrophilic surfaces
- □ It is a dynamic surface phenomenon
 - > Physisorption non-covalent interactions, reversible
 - > Chemisorption covalent or ionic interactions, irreversible

Adsorbent (Solid Substrate)

<u>Ad</u>sorption

□ Mass of water adsorbed depends on:

- > Affinity between water and surface
- > Temperature
- > Water vapor pressure
- > Area of exposed surface

Effective molecular layers adsorbed as function of water content and specific S.A. [1]

Water content (%)	Specific Surface Area (m ² /g)		
	0.1	1.0	10
0.1	41.8	4.2	0.4
1.0	418	41.8	4.2
10.0	41,800	418	41.8

[1] Zografi and Hancock. Proceedings of 53rd International Congress of Pharmaceutical Sciences(1994)

Water Vapor Adsorption of Crystalline NaCl

Deliquescence

- It results in liquid water production in solids at relative humidities less than 100%
- Usually occurs with crystalline and highly water soluble solids
- □ It is triggered when ambient relative humidity surpasses the critical relative humidity (RH₀) of the solid

[1] Van Campen et al., Journal of Pharmaceutical Sciences (1983)

Deliquescence

- Adsorption below RH₀
- Rapid increase in mass at RH₀

RH_0 – Properties

- □ RH₀ is an inherent property of the substance
- **R** $H_0 \approx a_w$ of saturated solution in equilibrium with solid phase
- Deliquescence RH can be reduced by presence of a second deliquescent solid – API's and excipients are deliquescent

Compound	$RH_0(\%), 25^{\bullet}C$	a_w *100, 25°C	<i>Literature RH₀(%) values</i>
Ranitidine HCl	76	76	76, 25°C (19),
			67, 40°C (20)
Diphenhydramine HCl	82	82	77, 37°C (21)
Thiamine HCl	89	90	88, 37°C (21)
Sucrose	85	85	84, 25°C (22)
Lactose anhydrous	95	97	95, 40°C (23)

Deliquescent Excipients

Compound	RH ₀ (25°C)
Sucrose	85
Lactose anhydrous	95
Maltose monohydrate	95
Mannitol	95
Citric acid monohydrate	78
Sorbitol	69
Sodium citrate dihydrate	86
Sodium Chloride	75
Potassium chloride	84

<u>Ab</u>sorption

Refers to the accumulation of water <u>within</u> the solid (not on the surface)

- □ Two situations where absorption occurs:
 - Into the amorphous (disordered) solids/regions
 - into the crystal structure of a solid to form a crystalline hydrate
Absorption into Amorphous Solids

- Amorphous solids adsorb and absorb water vapor
- Partially amorphous (disordered) solids absorb water (microcrystalline cellulose)
- Absorption can be viewed as dissolution of H₂O vapor into the solid with a consequent effect on material properties
- **Evidence for absorption into amorphous solids:**
 - > Amount of H_2O taken up depends on <u>mass</u> not surface area
 - > Substantially more than 2-3 monolayers of H_2O are taken up

Example – Chemical Structure

Water vapor sorption profile for a hydrophilic vs hydrophobic amorphous polymer

Crystalline Hydrates

- Approximately 1/3 of APIs are capable of forming crystalline hydrates
- In crystalline hydrates water forms an integral part of the crystal lattice
- **Based on structural considerations hydrates can be classified:**
 - Isolated site hydrates
 - > Channel hydrates
 - > Metal or ion coordinated hydrate
- Hydrates can be stoichiometric or non- stoichiometric (water content can vary with vapor pressure)

Formation of a Stoichiometric Hydrate – Dynamic Water Vapor Sorption Experiment

Formation of a Stoichiometric Hydrate

Formation of monohydrate from anhydrate form (note the stability of the monohydrate form)

[1] Giron et al., Journal of Thermal Analysis and Calorimetry (2002)

Formation of a Non-stoichiometric Hydrate

Cromolyn Na forms an infinite number of nonstoichiometric hydrates

[1] Cox et al. Journal of Pharmaceutical Sciences (1971)

Sources of Residual Water

Influence of Residual Water

Water and Solid State Stability

Water affects both chemical and physical stability of solids

Both are important to achieve optimum product performance

Physical Stability:

- > Solid-solid phase transformation:
 - Polymorphism
 - Anhydrous-hydrate
 - Amorphous-crystalline
 - Solvate-anhydrate/solvate-hydrate
 - Hydrate-amorphous
- Solid-solution phase transformation
 - Deliquescence

Sequence of Events During Crystallization

Chemical Stability

□ Mechanisms:

- Structural"- association of H₂O with solid results in some type of structural change that influences chemical reactivitythis would include changing molecular mobility
- > "Chemical"
 - H₂O is a solvent (deliquescence)
 - $H_2^{-}O$ is a reactant e.g. hydrolysis
 - H₂O is a product (condensation reactions) e.g. Maillard reaction
 - H₂O changes medium polarity
- Water activity is likely to be a critical parameter for "chemical" category

Mechanisms – Structural

\Box Loss of H₂O from crystal can result in:

- > Empty channels that can convey O_2 into crystal structure
- Structural collapse to disordered amorphous phase (amorphous phase will have enhanced reactivity)

Dehydration of Raffinose Pentahydrate to Amorphous Phase

[1] Saleki-Gerhardt et al., Journal of Pharmaceutical Sciences (1995)

Chemical – Sucrose Hydrolysis

- Sucrose undergoes acid catalyzed hydrolysis
- Sucrose is deliquescent and forms a solution at high RH
- If formulated with acidic component, protons are provided and hydrolysis can occur
- Moisture provides the reaction medium and affects degradation kinetics

Sucrose Inversion Kinetics

Salameh and Taylor, J. Phys. Chem. B. 2006

Water-Solid Interactions and Processing

Processing can:

- Bring water (liquid/vapor) into contact with API and excipients, e.g. wet granulation
 - Moisture labile substances (chemical degradation)
 - Moisture induced phase transformations
- Change solid state properties so water interaction is altered, e.g. milling

Effect of Processing on Vapor Sorption

Unprocessed vs rollar compacted aspirin Roller compacted sample estimated to have 10% amorphous content

[1] Hancock and Zografi, Journal of Pharmaceutical Sciences (1996)

Conclusions

Residual water is capable of producing significant changes in physicochemical properties

□ Water-solid interactions are complex

- Both chemical and physical stability can be affected
- Moisture induced phase transformation are of greatest concern:
 - Solid-solid: Hydrates and amorphous phases
 - Solid-solution: Deliquescence

Conclusions

□ In amorphous systems, *T_g* considerations and water activity affect chemical reactivity

- Processing can leave pharmaceutical systems susceptible to phase transformations and increased chemical reactivity
- Important to consider that nominally crystalline material may have disordered regions

Any Questions?

Module 2: Preformulation

PHYSICO-CHEMICAL PROPERTIES OF API Impact on Formulation Development

Duk Soon Choi, Ph.D.

Pharmaceutical & Analytical R&D Hoffmann-La Roche Inc. Nutley, NJ

- Preformulation in Drug Discovery Perspective
- Preformulation in Drug Development Perspective
- Preformulation in Dosage Form Design Perspective
 - Case Studies

Tiered Preformulation Activities

High Throughput

- Kinetic Solubility
- cpKa
- cLogP
- PAMPA
- Melting Point

Preliminary Preformulation

- Thermodynamic Solubility
 - pH Stability
 - pH Solubility
- pKa

•

•

- Log P/D
- Caco-2, P-gp liability
- Salt selection
- Polymorph Screening
- Purity/Impurity Profile of API
- Preliminary stability
- Hygroscopicity
- Crystallinity
- Particle size distribution
- Forced degradation of API

Comprehensive Preformulation

- Polymorph screening
 Single crystallography
- Micromeritics
- Particles characterization •Particle size
 - Surface area & surface energyFlowability, bulk density
- Solubility in pharmaceutical vehicles
 •Binary mixture, complexation
- Solubility characteristics
- Thermal properties
- Excipient compatibility
- Degradation mechanism
- Structure elucidation

Landscape in Drug Development; Attrition Rate

Source: Pharmaceutical Research and Manufacturers of America.

Figure 1 shows the amount of time, on average, for a successful new drug to move through and complete the four stages. It also illustrates that for every 10,000 compounds initially identified, only one, on average, will be found safe and effective, and be approved by FDA.

^{*} New Drug Development, GAO-07-49, Nov 2006

Why compounds fail and slow down in development?

- Reasons for failure
 - Safety issues
 - Lack of efficacy
 - Business cases
 - Poor drug like properties
- Reasons for slowdown
 - Synthetic complexity
 - Low potency
 - > Ambiguous toxicity findings
 - Complex target indication
 - Manufacturability stability and consistency
 - Poor drug like properties

*Robert Lipper, Modern Drug Discovery, 1999, 2(1), p 55

"Drug Like Properties" impact on absorption

"Point-to-Consider" for Clinical Candidate Develop-ability Criteria in Pharmaceutics

These properties have potential impact on absorption, synthesis, manufacturability and shelf life

BCS Classification

Class	Solubility	Permeability	Example
1	High	High	Enalapril L-dopa
2	Low	High	Naproxen Phenytoin
3	High	Low	Cimetidine Ranitidine
4	Low	Low	Cyclosporine Furosemide

- A drug substance is considered HIGHLY SOLUBLE when the highest dose strength is soluble in < 250 ml water over a pH range of 1 to 7.5.
- A drug substance is considered HIGHLY PERMEABLE when the extent of absorption in humans is determined to be ≥ 90% of an administered dose, based on mass-balance or in comparison to an intravenous reference dose

Permeability Consideration for BCS

Extent of absorption in humans:

- > Mass-balance pharmacokinetic studies.
- > Absolute bioavailability studies.

Intestinal permeability methods:

- > *In vivo* intestinal perfusions studies in humans.
- > In vivo or in situ intestinal perfusion studies in animals.
- In vitro permeation experiments with excised human or animal intestinal tissue.
- In vitro permeation experiments across epithelial cell monolayers.

Permeability Estimation

Partitioning: Log P / D

- > cLog P
- Partitioning in n-octanol
 - Shake Flask Method
 - Potentiometric Titration
 - HPLC-IAM
- Permeability
 - > PAMPA
 - > Caco-2
 - > Other transporters

Solubility Consideration for BCS

- The pH-solubility profile of test article in aqueous media with a pH range of 1 to 7.5.
- □ Shake-flask or titration method for thermodynamic solubility.
- □ Analysis by a validated stability-indicating assay.
- □ Factors to consider:
 - > Dose
 - > Dose number (Do)
 - > Dissolution medium

The Biopharmaceutics Classification System (BCS) Guidance, CDER

Dose Number

- Do = Dose / Cs / 250
 - > Dose = Maximum dose strength
 - Cs = Minimum aqueous solubility in pH 1 8
 - > 250 = FDA glass of water (8 oz)
- Example
 - Ranitidine
 - Dose = 300 mg
 - Cs = 100 mg/mL
 - Do = 300 mg / 100 mg/mL / 250 mL = 0.006 : high solubility
 - > Acetaminophen
 - Dose = 750 mg
 - Cs = 0.1 mg/mL
 - Do = 750 mg / 0.1 mg/mL / 250 mL = 30 : low solubility
 - > Digoxin
 - Dose = 0.25 mg
 - Cs = 0.01 mg/mL
 - Do = 0.25 mg / 0.01 mg/mL / 250 mL = 0.1 : high solubility

What is polymorphism?

- Polymorphism is a phenomenon that involves different packing arrangements of the same molecule in the solid state
- **Type of Polymorphism**
 - > Packing polymorphism: e.g. acetaminophen
 - Packing and bonding arrangement of the structure is different
 - > Conformational polymorphism: e.g. spiperone
 - Different conformers of the same molecule in different crystalline modification
 - > Pseudo polymorphism: e.g. paroxetine hydrochloride
 - Molecular adducts with solvent

Why Polymorphism is important?

- □ It is regulatory requirement
- It provides strong IP position
- Polymorphs have different mechanical property impacting on manufacturability of drug
- Polymorphs have different solubility and dissolution rates, potentially leading to lower or higher biological activity than desired.
- Polymorphs can have profound effect on drug safety, efficacy, and quality

Chloramphenicol-3-palmitate has 3 crystalline forms and amorphous form. The most stable form A is marketed. Form B has an eight fold higher bioactivity than Form A, creating potential fatal dosage.* *Haleblian, J. Pharm Sci, 1975, 64, p1269

API Form Selection Strategy / Timing

It is a balance between resources and completeness of studies

Salt Form Selection

- Once candidate molecule is identified, the feasibility of salt form should be considered
- Salt form may provide benefits of stability, solubility, dissolution rate, crystallinity, and manufacturability.
- The optimal salt form should be selected based on combination of physicochemical properties, manufacturability, processability and PK result.
- Changing salt form during development may require repeating most of studies. On the other hand, continuing with suboptimal form can lead to increased development time and/or product failure.
- Selection of optimal salt form is crucial at the initial stage of drug development
- Feasibility and necessity of salt form
- Crystallinity
- Solubility and dissolution rate
- Stability chemical and physical
- Hygroscopicity
- Manufacturability and processability
- Toxicity of counter ions
- Bioavailability

Commonly Used Counter Ions			
Anions	Cations		
Acetate	Calcium		
Bromide	Magnesium		
Citrate	Potassium		
Hydrochloride	Sodium		
Maleate			
Mesylate			
Nitrate			
Phosphate			
Sulfate			
Tartrate			

Polymorph Screening

- Screen different solvents for crystallization
- Screen different kinetic conditions for crystallization
- Conduct stress studies under high humidity and heat to evaluate polymorphic conversion
- Study effect of pharmaceutical processing early in process development to evaluate polymorphic conversion
- Check water mediated transformation
- Select the most stable form as early as possible in the development to avoid late stage problems

Polymorph Screening – First Step Crystallization Experiment

Crystallization of API

- For crystallization to occur, solution must be supersaturated.
- Methods to create supersaturation
 - Temperature
 - Evaporation of solvent
 - Reaction
 - Addition of anti-solvent
 - Alteration of pH
- Attempts should be made to recrystallize the drug from various solvents.

McCrone's Law Every compound has different polymorphic forms, and that, in general, the number of forms known for a given compound is proportional to the time and money spent in research of that compound

Factors Influencing Crystallization

- Solvent composition and polarity
- Drug concentration and degree of supersaturation
- Temperature and cooling rate
- Presence of seed crystals and nucleation sites
- Additives to modify crystalline lattice
- Agitation rate, pH, salt
- Processing time
- Presence of impurities

Polymorph Screening – Second Step Effect of Pharmaceutical Processing

- API can be subjected to various pharmaceutical processing conditions for final blend and dosage form. The conditions can be harsh for API (e.g. 80 °C and 100% RH with high shear)
- Unintentional phase transformation can (does) occur during pharmaceutical processing
- Thorough evaluation of polymorphism should be performed to ensure consistency, stability, and safety of drug product.

Effect of Pharmaceutical Processing on Polymorphism

Milling

- Milling can be used to produce homogeneity of the particle sizes (low energy) or to reduce the primary particle size (high energy)
- > High energy milling produces fresh surfaces with local increase in pressure and temperature on solids, which can cause polymorphic conversion or amorphization of drug.
- Amorphous can revert back to crystalline over time, impacting bioavailability
- Co grinding with excipient is an excellent way to produce cocrystal

Effect of grinding on polymorphic conversion of chloramphenicol-3palmitate M. Otsuka, 1983, J. Pharm Sci, 75, p 506

Effect of Pharmaceutical Processing on Polymorphism (continue)

Wet granulation

- Solvent (water) mediated transformation (hydration) can occur
- Drying
 - Removal of water (solvent) can incur dehydration of hydrate or amorphization. Spray drying and freeze drying typically produce amorphous form.
- Compaction
 - Energy applied in general is insufficient to exert polymorphic conversion. In the case of amorphous form, the selection of key excipients is crucial to absorb compression energy.

Case Study: Project A

Background

- After exhaustive search for an ideal compound, discovery team came up with two candidates that showed excellent selectivity, potency, and high affinity to receptor.
- Both compounds, however, exhibited less than desirable PK profile and bioavailability in animals.

Physicochemical Properties of Two Leads

Property	Compound A	Compound B
MW	457	470
Σ (N + O)	6	8
Melting point	220 °C	251 ⁰C
cpKa (acidic)	3.5	3.4
cLog P	4.1	2.5
Caco-2 (10 ⁻⁷ cm/sec)	7.7	29
Solubility (SGF)	0.008 mg/mL	0.005 mg/mL
Solubility (SIF)	5.9 mg/mL	4.3 mg/mL
Bioavailability (Rat)	3 - 10%	3 - 10%

Pro-Drug Design

The pro-drug moiety contained

- Basic functional group (4)
- Polarized functional group (5)
- > Hydrophobic functional group (3)
- Total 25 pro-drugs were synthesized and evaluated for drug like properties
 - > Biological properties
 - Plasma stability, TDI, Caco-2, etc.
 - > Physicochemical properties
 - Solubility, melting point, stability, etc.

How we have fared

Property of Selected Pro-drug (Out of 25 Candidates)

No pro-drug was found in plasma

Property	Value
MW (FB)	570
Melting Point	248 °C
pKa (basic)	8.3
Caco-2	87 x10 ⁻⁷ cm/sec
Intrinsic Solubility	3 mg/mL
Bio in Rats	33%
Bio in Dogs	41%

Salt and Polymorph Selection

- Following selection of a drug candidate with good pharmacological and physicochemical properties, salt screening was performed
 - > HCl salt was selected as final salt form
 - Good solubility and acceptable solid state stability
 - Non hygroscopic
 - > Pharmaceutically process-able

Preliminary polymorph screening found two polymorphs

Result of Polymorph Screening

Powder XRD showed two distinctive patterns

DSC showed two distinctive thermal transitions

200

250

300.0

Polymorph Characterization

Solvent mediated transformation study

- > At room temperature, Form I + Form II slurry mixture converted to Form II
- Form I + II mixture converted to Form II at reflux

□ Aqueous solubility at 25 °C

	SGF	SIF	Water
Form I	45 mg/mL	78 mg/mL	86 mg/mL
Form II	28 mg/mL	63 mg/mL	72 mg/mL

Form II is more stable form (monotropically related)

Physicochemical Property (Form II)

- Good solubility in physiological pH (So = 3 mg/mL)
- Hydrolyzes rapidly at pH > 7, but reasonably stable in pH 2 – 7
- Good partition coefficient, Log D at pH 7.4 = 1.4

Preformulation Perspective

Summary of Project A

Preformulation characterization facilitated selection of clinical candidate

- > Selection of pro-drug with good "drug like properties"
- Selection of HCl salt prior to GLP
- > Identification of stable polymorph prior to GLP
- > Acceptable bioavailability (> 40% in Dog)
- Preformulation characterization enabled design of toxicological and clinical dosage form design
 - > Dosage form and release characteristics were defined

Excellent Team Work Good Clinical Candidate

Case Study - Project B

Background of Project B

- After countless sleepless nights, discovery team brought three compounds onto table as clinical leads
 - > Acceptable selectivity & potency
- Project team decided to do pilot tox study, PK study and physicochemical characterization on three molecules for ranking

Physicochemical Properties of Clinical Leads

	B-1	B-2	B-3
pK (basic)	4.3	3.9	3.8
Solubility in SGF (pH 1.2)	2.0 mg/mL	> 5 mg/mL	1.4 mg/mL
Solubility in SIF (pH 7.4)	0.0052 mg/mL	0.010 mg/mL	0.0005 mg/mL
Stability in SGF & SIF	Stable	Stable	Stable
cLog P	2.2	2.1	2.3
Caco-2 (10 ^{- 7} cm/sec)	249	51	84
Melting Point	201 °C	185 °C	218 ºC
Crystallinity	Crystalline	Crystalline	Crystalline
MW	424	456	442
Solid State Stability	Stable	Stable	Stable

After careful evaluation of all data presented, project team endorsed B-3 as clinical candidate

Selection Criteria

- 1. Potency
- 2. Selectivity
- 3. Animal safety
- 4. PK property (clearance, t_{0.5}, etc.)
- 5. Physicochemical property

Physicochemical Property

- Reasonable solubility in acidic media but poor solubility in pH greater than 4 (So = 0.0005 mg/mL)
- Good partition coefficient in intestinal pHs (Log D = 2.3 at pH 7.4)
- Chemically stable in gastro intestinal pH range

Dissolution limited absorption is expected

Absorption may vary depending on tox species (Gastric pH + emptying time + volume)

Monkey & Rat SD PK Profile

Bioavailability in rat = 20%
Bioavailability in monkey = 6% - 10%

Poor "drug like properties" resulted in poor bioavailability

	AUC (ng*hr/mL)		Cmax (ng/mL)	
	Male	Female	Male	Female
Un-milled (d ₉₀ <70)	446	2280	100	273
Micronized (d ₉₀ <15)	852	2960	152	537

Back to Drawing Board

- Team is content with selectivity, potency, and tox profile of lead compound
- Need to improve bioavailability
 - > Caco-2 is classified as "medium"
 - Solubility at intestinal pH is poor (So = 0.0005 mg/mL)
 - > Dissolution rate limited absorption
- □ Improve process-ability (minimize particle size effect)
- Pro-drug is not an option

Can salt form provide desired properties?

Factors to Consider in Selection of Salt Forms

Feasibility and necessity of	
salt form	An
Crystallinity	Ac
Solubility and dissolution rate	Br
Stability - chemical and	Cit
physical	Ну
Hygroscopicity	Ma
Manufacturability and	Me
processability	Nit
Toxicity of counter ions	Ph
Bioavailability	Su
	Та

Commonly Used Counter Ions			
Anions	Cations		
Acetate	Calcium		
Bromide	Magnesium		
Citrate	Potassium		
Hydrochloride	Sodium		
Maleate			
Mesylate			
Nitrate			
Phosphate			
Sulfate			
Tartrate			

Is it feasible to form salt?

- Weak base with pKa of 3.8
- pH max is estimated to be ~ 0.5

To form salt: difference between drug and acid pK > 2 Yes, it is likely to form salt, but only with strong acid.

Summary of Salt Screening

Type of Salt	Crystallinity	Melting (DSC)	[S] in H ₂ O mg/mL	Hygrosc opicity	SS Stability
Free Base	Crystal	218 ºC	0.0005	1%	Stable
Esylate	Crystal	232 °C	0.27	2%	Stable
Mesylate	Crystal	231 ºC	0.08	1%	Stable
Tosylate	Crystal	254 °C	0.07	2%	Stable
Bromide	Crystal	214 ºC	0.12	1%	Stable
Nitrate	Crystal	decompos e	0.30	3%	Unstable
Chloride	Poor	decompos e	0.35	5%	Unstable
Sulfate	Poor	decompos e	0.30	3%	Stable

When we put all physicochemical data together

Polymorph screening of mesylate salt found two polymorphs

Polymorph Characterization of Mesylate Salt

Polymorphs have different PXRD Patterns.

Two XPRD patterns of mesylate salt are shown against free base

Polymorphs have different melting points.

Form I melts at 218 °C, recrystallizes and melts at 231 °C.

Polymorph Characterization of Mesylate Salt

Polymorphs may have different hygroscopicity.

Form I is more hygroscopic than Form II.

Polymorphs may have different dissolution rates.

Intrinsic dissolution rate of Form I is faster than Form II.

Polymorphs Relationship

Monkey PK Study Result

Mesylate salt was selected

□ Stable polymorph Form II was identified

Outcome of Monkey PK Study

Single Dose PK Study in Monkey (Mesylate vs. Free Base)

Mesylate salt improved bio about 2.5 fold. (20% in monkey)

	AUC (ng*hr/mL)	CV (%)	Cmax (ng/mL)
40 mg/kg free base	3502	27	190
20 mg/kg mesylate	4310	32	250
Dissolution Profile of Mesylate Salt

- Mesylate salt dissolves rapidly into a transient equilibrium state in 20 min, and begins to precipitate after 2 hours.
- Free base dissolves gradually into an equilibrium state in an hour.

Mesylate Residue in Aqueous Media

- Mesylate salt converted to free base within 4 hours in simulated gastric fluid (SGF: pH 2)
- Conversion of mesylate salt to free base can cause variability in absorption

Preformulation Perspective Absorption

Deliver salt to absorption site before precipitation?
 Will salt in capsule increase bioavailability? With stabilizer?

Preformulation Summary

- Mesylate salt form has increased oral bioavailability via increased solubility and dissolution rate
 - From 10% (micronized free base) to 20% (micronized mesylate salt) in monkey
- Micronization had minimal impact on oral bioavailability of mesylate salt in monkey
 - > Both un-milled and micronized API: F = 20%

Any Questions?

Module 2: Preformulation

PHYSICO-CHEMICAL PRPPERTIES OF API AND EXCIPIENTS: IMPACT ON FORMULATION DEVELOPMENT

Navnit Shah, Ph.D. Distinguished Research Leader Pharmaceutical R&D Hoffmann-La Roche Inc. Nutley, NJ

The Drug Development Process

Physico-chemical Properties of API Impacting Formulation Development

- Molecular weight
- Stability
- Solubility in physiological fluids
- Crystal form
- Particle Size
- 🗆 рКа
- Salt Form
- Log D (Partition coefficient)
- Permeability

Physico-chemical Properties of API Impacting Formulation Development

Bioavailability

Ideal-- at least 30%
Target profile

Stability

Ideal --at least 2 yrs. at ambient conditions in conventional pkg.

Manufacturability

- > Scale-able
- Reproducible
- Cost effective

Drivers for Formulation Development

PHYSICO-CHEMICAL PROPERTIES IMPACTING BIOAVAILABILITY

- Molecular Weight
- Chemical Structure
- Solubility
 - ➤ Salt
 - Particle Size (rate)
 - Crystal Form
 - Melting Point
- Permeability

Drug Molecular Properties Impacting Bioavailability

- Log P > 5 (poor aqueous solubility)
- □ Mol. Wt. > 500 (limited diffusivity)
- H-bond donors > 5 and H-bond acceptors >10 (impaired permeability)
- High melting point
- High dose of poorly soluble drugs

IDEAL PROPERTIES OF DRUG MOLECULE FOR ORAL DELIVERY

- □ Molecular weight < 500 g/mol
- □ Solubility > 1 mg/mL
- \Box Permeability > 100 * 10 -7 (Caco2 permeability*)
- □ Melting point 100 200 °C

* Human colonic cells used for permeability assessment

JOURNEY OF MOLECULES FROM TABLET TO THE TARGET TISSUES

- · Drug has to dissolve in the gastro-intestinal tract to be absorbed
- Drug has to be absorbed (via active or passive transport mechanism)
- Drug has to survive gastro-intestinal environment and first pass effect to reach target tissue

Oral Absorption and Bioavailability

Principle of Drug Absorption (Passive Transport) Jw = Pw*Cw

Jw = Absorption Rate Pw = Intestinal Wall Permeability Cw = Drug Concentration at Intestinal Wall

Maximal Absorption Rate: Jw, (max) = Pw*Solubility

Biopharmaceutical Classification System: Solubility and Permeability

Class	Solubility	Permeability
1	High	High
2	Low	High
3	High	Low
4	Low	Low

Biopharmaceutical aspects (solubility and permeability) impact on bioavailability and as a result on formulation design

FORMULATION APPROACHES FOR IMPROVING THE ORAL ABSORPTION OF POORLY ABSORBED DRUGS

Salt formation

Particle size reduction

- Micronization
- Nano-particulate

Lipid based delivery systems

- Self emulsifying drug delivery systems- SEDDS,
- Microemulsion

Micro-precipitation

Solid dispersion and/or solid solution

SALT FORMATION Examples: Penicillin

Salts improve solubility
Provide rapid rate of dissolution and absorption
Result in improved bioavailability

SALT FORMATION (PENICILLIN)

USE OF SALT FORMS TO IMPROVE BIOAVAILABILITY

Appropriate salt form enhances aqueous solubility thereby increasing absorption

PARTICLE SIZE REDUCTION

Increases surface area

Improves dissolution rate and bioavailability

PARTICLE SIZE REDUCTION

Particle size reduction significantly increases drug surface area resulting in increased rate of dissolution and potentially absorption

Effect of Particle Size Reduction on Dissolution Rate (Noyes and Whitney, 1897) dM/dt = D S (Cs - C)/h

PARTICLE SIZE REDUCTION METHODS

□ Low Energy Hammer Mill

Median Particle Size Range: 30 - 50 microns

High Energy Hammer Mill

Median Particle Size Range: 20 – 100 microns

Air-Jet Mill (Micronizer)

Median Particle Size Range: 2 – 10 microns

Wet Mill

Median Particle Size Range: 0.5 – 5 microns

Mill Comparison

Effect Of Particle Size On Dissolution Rate And Bioavailability

- Significant improvement in rate of dissolution with increase in surface area (smaller particle size)
- Higher bioavailability achieved in dogs

Effect of Drug Agglomeration

□ Reduces effective surface area

surface area of agglomerates vs. surface area of primary particles

Resist wetting: poor dissolution

Poor content uniformity, especially for potent drugs

Pictorial View Demonstrating the Improvement of Wetting Behavior of a Poorly Soluble Drug by Forming a High Energy Ordered Mixture

After Dispersed in Water

Micronized Drug

Simple Ordered Mixture (Drug blended with Hydrous Lactose)

High Energy Ordered Mixture (Drug blended with Hydrous Lactose and milled using Micropulverizer)

Particle Size and Surface Area Impacting on Dissolution Rate

The mean contact surface area taking part in the dissolution was calculated as: $S_c = W/t G$

- S_c : the mean contact surface area taking part during dissolution
- W: the amount of drug dissolved in time t
- t: dissolution time
- G: the intrinsic dissolution rate

LIPID FORMULATIONS Self-Emulsifying Drug Delivery Systems (SEDDS)

Self-Emulsifying Drug Delivery Systems (SEDDS) are isotropic mixtures of a drug, lipophilic vehicle and one or more emulsifiers which forms fine emulsion with aqueous fluids on mild agitation

Attributes:

- Drug in solution for maximum absorption
- Type of lipid plays a significant role in drug absorption
- Lipid digestion impacts bioavailability
- Particle size of emulsion affects rate and extent of absorption

Lipid Effect on Solubility

Choice of oil

Choice of emulsifier

□ Chain-length of fatty acids

HLB values

Degree of saturation

EFFECT OF EMULSIFIER CONCENTRATION ON PARTITION COEFFICIENT, DROPLET SIZE AND THE RELEASE RATE OF Ro 15-0778

Correlation between Particle Size of the Emulsion and In Vivo Performance of Cyclosporin Based Formulations

Dose: 300 mg

Figure 1—Interindividual comparison of cyclosporine concentration-time profiles following single oral administration of 300-mg reference formulation to 24 volunteers. Inset shows the initial portion of the profile on a linear-linear scale.

Formed a crude emulsion with D50 - 2 to 5 microns determined by a Dynamic Light Scattering Dose: 180 mg

profiles following single oral administration of 180-mg test formulation to 24 volunteers. Inset shows the initial portion of the profile on a linearlinear scale.

Formed a micro-emulsion with D50 - 30 nm determined by a Dynamic Light Scattering

Kovarik et al., J. Pharm. Sciences, Vol. 83, No. 3 March 1994

LIPID DIGESTION PROCESS

BIOAVAILABILITY OF DRUG X FOR SEDDS

BIOAVAILABILITY OF DRUG X FOR SEDDS

IMPACT OF CRYSTAL FORM ON BIOAVAILABILITY

Definitions of Crystal Forms

- Crystal An orderly, infinite arrangement of molecules or atoms in a solid
- Polymorphs Different crystalline arrangements possible for the same chemical entity
- Solvate Crystal form in which solvent molecules are contained as part of the crystalline structure
- Hydrate The special case of a solvate where the solvent in the crystal is water
- Amorphous form A non crystalline material with random arrangement of molecules
In Vitro Dissolution and PK Profiles in Human of Amorphous Vs. Crystalline Form Tablet Formulations

In vitro dissolution in citrate buffer, pH 3 does provide good prediction for in vivo absorption.

Impact of Crystal Forms of Drug X on Bioavailability in Dogs

Formulation	Cmax/Dose (ng/ml)(mg/kg)	AUC/Dose (ng.hours/ml)	Tmax (hours)
Suspension (Anhydrous Form)	174	1594	3.5
Suspension (Hydrate Form)	107	604	1.8

Anhydrous Form provided higher AUC approximately 2.6 times than Hydrate Form.

Amorphous Solids

- Thermodynamically unstable (metastable) configuration of the molecules
- Macroscopic properties of a solid with the microscopic structure of a liquid
- Improved solubility/dissolution rate and bioavailability

Amorphous Materials

- The ideal glass is a liquid with virtually "infinite" viscosity, *i.e.*, very low molecular mobility or ("frozen in")
- The glass transition temperature (Tg) is a measure of molecular mobility in a glass
- At Tg the material passes from a glass to a rubbery liquid
- A high glass transition is desirable in order to avoid unwanted physical changes over time (*e.g.*, crystallization)
- A good rule of thumb is to have a Tg that is 50°C higher than that of the processing, stability or storage conditions

Temperature Enhances Crystallization of Amorphous Solids

The glass is 10¹⁰ to 10¹² times more viscous than the liquid

Moisture Enhances Crystallization of Amorphous Solids

Sorbed moisture plasticizes glasses, *i.e.*, reduces the glass transition thus increasing molecular mobility

Amorphous API Handling Considerations

- The mechanical properties and hygroscopicity are markedly different from the corresponding crystalline API
- Water is known to have a profound effect on the Tg of amorphous API, acting as a plasticizer by increasing the free volume of the material, enhancing structural mobility and decreasing the Tg
- Manufacturing processing, packaging configuration and storage conditions are the most important factors influencing stability of the amorphous API
- In many instances, amorphous API itself can not withstand the manufacturing processing conditions and maintain its stability throughout the shelf-life

Therefore, stabilization of amorphous API by excipients (polymers) is very important

Amorphous API Technical Challenges

Generally, it is preferred to convert crystalline to amorphous form only by choice with justifiable benefit

Desirable Attributes of the Polymer for Amorphous Stabilizer

- High Tg
- Ideally, solubility parameter close to that of the API
- Maintains supersaturation solution of the drug in the GI fluids, maximizing drug exposure
- High molecular weight
- Acts a moisture scavenger protecting the drug from moisture
- Prevents fusion/nucleation of amorphous API particles under compaction

Amorphous API

C. Leuner and J. Dressman, Eur. J. of Pharmaceutics and Biopharmaceutics,

50: 47-60 (2000).

Stabilization of Amorphous API by Formulation Intervention

Selection of polymers and processes is critical for amorphous stabilization to achieve:

- Immobilization
- Prevents nucleation
- Protects from moisture
- Maintains supersaturation
- Maintains Tg
- H-bonding formation ability

Comparison of the T_g and T_m of the Excipients Vs. the Corresponding Solubility Parameter

Excipients Solubility Parameters (δ)

Stabilization of Amorphous API by Polymer Additive

ONE PHASE

- Amorphous API and polymer are miscible
- One composite glass transition
- Physical stability is expected to be

concentration-dependent

Relies on the molecular dispersion
 of the API in the polymer matrix

TWO PHASES

- Amorphous API and polymer are immiscible
- Two glass transitions, one for each component
- Physical stability is expected not to be concentration-dependent
 - Relies on the immobilization and isolation of the labile amorphous API in rigid glasses of inert polymer matrix

Miscibility Definition

The miscibility was determined by the Tg and Tm of the mixtures.

- Miscible: One Tg in the temperature range between the Tg of the pure components.
- Partially miscible: Two Tg observed in the temperature range <u>between</u> the Tg of the pure components. Depression of Tm.
- Not miscible: Tg or Tm of the pure components unchanged.

Gordon-Taylor or Couchman-Karasz equations may be used to predict Tg of amorphous solid solutions

DDSC Profile of Amorphous Formulation

Amorphous Methods of Preparation

- Solvent-controlled microprecipitation
- Hot melt extrusion
- Solvent-evaporation (i.e., spray dryer, fluid bed coater)

Factors Impacting Amorphous Processing Selection

- Glass transition temperatures (Tg) and melting points for both API and polymer
- Degree of plasticizing effect by water or residual solvent(s)
- MW and viscosity of the polymers
- Solubility of the API and the polymer in solvents

Amorphous Formulations Microprecipitation Technology

- Development of a stable amorphous formulation can be an effective approach to increasing dissolution and solubility
- A novel patented technology was developed at Roche and applied to Experimental Drug A having poor solubility of <10 mcg/ml
- Formulations provided higher bioavailability and a sustained release profile

AMORPHOUS FORMULATIONS MICRO-PRECIPITATION (CCI)

Challenges:

The poorly soluble Drug A initially existed in a crystalline form having very low aqueous solubility (<10 mcg/mL), resulting in poor bioavailability

Ro 31-7453 in addition has very low solubility in lipids and oils (<10 mcg/ml)

Formulation Intervention:

Convert the crystalline form to amorphous form while maintaining its stability

QUALITY ATTRIBUTES OF THE MICROPRECIPITATED POWDER

PK profiles in human after a single dose

Amorphous drug incorporated in the ionic polymer matrix improved bioavailability, stability and provided a prolonged plasma profile in man.

"ROCHE PATENTED TECHNOLOGY"

Powder X-Ray Diffraction of Ro 31-7453 Showing the Amorphous Nature of the MBP

The MBP technology converts the drug to be in the amorphous form.

Moisture Sorption and Physical Stability of Microprecipitated Powder

Due to the high molecular weight and high glass transition temperature of the polymer, as well as its relative insolubility in water, the polymer acts as a desiccant and stabilizes the amorphous drug

FORMULATION SCREENING IN DOGS

Formulation	AUC/Dose	Tmax	Cmax	% Bioavailability
		<i>a</i>		,
	(N.h /mL)(mg/kg)	(hr)	(ng/mL)	
Micronized Drug Suspension	29.5 + 8.3	10	55 + 17	3.9
interonized Drug ouspension	29.9 – 0.9	1.0	55 - 17	5.7
Nanosized Drug Suspension	86.1 ± 13.7	1.5 ± 0.6	$_{142} \pm _{53}$	11.2
ũ ĩ				
	868 ± 237	2.5 ± 0.9	1212 ± 358	89.0

Parallel design, N = 4

* Microprecipitated Bulk Powder contains 50% amorphous drug in ionic polymer

- •All conventional technologies, such as particle size reduction, failed to achieve satisfactory bioavailability.
- •Significant bioavailability enhancement and prolonged exposure achieved with Micro precipitation technology.

Hot Melt Extrusion

Hot Melt Extrusion

- With high energy of mixing applied in a molten mass of the drug and the polymer during the process, the drug can be uniformly embedded into the polymer matrix
- Typical co-extrudate is dense, minimizing moisture uptake and improving both physical and chemical stability of the product
- Downstream densification process is typically not required
- Processing temperature should not cause any degradation of the API and the polymer

Hot Melt Extrusion

MATERIALS Physico-Chemical Properties

Physico- chemical properties	Starting Indomethacin	Eudragit EPO	PVP K30
Aqueous Solubility	Very poorly soluble (~0.004 mg/ml)	Soluble at pH <5	Water soluble
Molecular Weight	357.81 gm/mol	150,000 gm/mol	50,000 gm/mol
Tm and Tg	165° C and Tg 42 ° C	45 ° C	161 ° C
XRD Pattern	Crystalline	Amorphous	Amorphous

Effect of Indomethacin : Polymer Ratios on Tg of the Extrudates

With Eudragit EPO

Ideal phase behavior

POWDER X-RAY DIFFRACTION

Indomethacin converts to amorphous form in hot-melt extrudate and retains its crystalline form in physical mixture with Eudragit EPO

Improved Aqueous Solubility

Formulation	Solubility in SGF in mg/ml	
	24 hrs.	72 hrs.
Indomethacin	Can not be detected	0.051
Hot melt extrudate with Eudragit EPO		
HME 70:30	0.20	0.15
HME 50:50	6.52	0.14
HME 30:70	41.42	38.31
Hot melt extrudate with PVP K30		
HME 70:30	0.002	0.02
HME 50:50	0.04	0.05
HME 30:70	0.09	0.12

Improved Intrinsic Dissolution Rates

Formulations	Intrinsic Dissolution Rates		Formulations
Indomethacin	0.0008	0.0009	Amorphous
			Indomethacin
Hot melt extrudate with			Hot melt extrudate with
Eudragit EPO			PVP K30
HME 70:30	1.51	0.0058	HME 70:30
HME 50:50	2.68	0.0076	HME 50:50
HME 30:70	1.80	0.012	HME 30:70

Powder X-Ray Diffraction of Indomethacin Extrudates After Exposed to the SGF

With Eudragit EPO

With PVP K30

- Eudragit EPO stabilized Indomethacin better than PVP K30
- The higher level of Eudragit EPO, the better stabilization effect

Solvent-Evaporation Method

Spray Drying Fluid Bed Drying

Spray Drying Process

- A single solvent is highly recommended to avoid potential drug segregation
- Difference in the precipitation rate between drug and polymer may result into drug segregation
- Applicable for low boiling point solvents (i.e. acetone, ethanol)
- Downstream densification process is typically required to improve flowability and bulk density of the co-precipitate
- The co-precipitate typically exhibits poor bonding under compaction due to its spherical particle shape

Spray Drying Process and Formulation API, excipient(s), solvent isolution prep choice of polymer(s) solvent selection solvent selection spray drying residual solvent level density yield

• To prevent drug recystallization, product temperature must be well below Tg of the amorphousAPI

ISP Courtesy

Effect of Polymers on Maintaining Supersaturation of Tacrolimus

K. Yamashita et al., Int. J. of Pharmaceutics, 267: 79-91 (2003)

HPMC polymer was found to be effective in maintaining supersaturation of Tacrlimus when exposed to GI fluids, maximizing drug exposure

Stabilized Amorphous Formulation Via Particle Design Engineering

Microcrystalline

Cellulose Sphere

Depositing of drug : polymer in ethanol solution onto a microcrystalline cellulose sphere using a Fluid Bed Coater

> Microcrystalline Cellulose Sphere Amorphous drug embedded in the polymer matrix

Dosage Form: Beadlets filled in HGC

Fluid Bed Coater

PHYSICO-CHEMICAL PROPERTIES IMPACTING STABILITY

Stability

Physical Instability of a Tablet Formulation

Example demonstrating sintering phenomena of a porous tablet containing high drug loading of a water-soluble drug when exposed to high humidity and temperature

- Wrinkle of the film coat
- Decrease in dissolution of tablet

Means to Overcome Physical Instability of Tablet Formulation

Wrinkling of the film coat and decrease in dissolution of the tablet can be resolved by:

- Use a high shear granulator (instead of a low shear) to produce granulator denser granulation, minimizing moisture uptake
- Optimize the film coat composition to minimize moisture uptake

Stability Considerations for Lipid Delivery System

- Solubility and super-saturation of the drug in the formulation
- Effect of shear and cooling rate on crystallization, thereby affecting the resultant viscosity and release rate of the drug
- Hygroscopicity of the formulation on the physical stability of capsule shell
- Effect of peroxide, acid value, and degree of unsaturation
- Change in crystallinity during storage
- Kinetics of degradation

Establishment of Drug Loading to Avoid Potential Crystallization or Gelling of the Lipid Formulation

Supersaturated solutions beyond the inflection point exhibit high viscosity, increasing molecular interaction and subsequent aggregation, crystallization or gelling of the lipid formulation

Effect of Cooling Rate on the Resultant Viscosity of the Wax-Based Formulation

Effect of Cooling Rate on the Viscosity vs. Temperature Profiles of the Wax Based Vehicle

Cooling Condition	Cooling Time (min)	Viscosity (cps)
Fast	21	1000
Slow	103	415

HYDRATES TRANSFORMATION

Thermodynamic stability set by pressure, temperature and water activity (*P*-*T*, a_{W})

Anhydrous

Hydrate

- Hydrates have lower aqueous solubility and slower dissolution than non-hydrates
- Hydrates can form by exposure of the drug to water during processing or storage

XRD Patterns Indicating Hydrate Transformation During Manufacturing Process

 The result indicates potential conversion of the drug from Form I to Form II (hydrate form) when granulated with water.

Form I - Anhydrous Form II - Hydrate

Means to Overcome the Polymorphic Transformation Mediated by Water

Choice of Manufacturing Processes

- Solvent granulation (i.e, ethanol, isopropyl alcohol)
- Non-solvent granulation processes (i.e, hot melt granulation, roller compactor)
- Direct compression which may have some limitations for high drug loading with poor compressibility and sticking nature of the drug

Selection of excipients

> Excipients with low moisture adsorption properties were selected

Selection of package

> Desiccant was included in the package

Appropriate Selection of Manufacturing Process to Overcome Polymorphic Conversion

There is no evidence of conversion to the crystal form of the drug when granulated with "Isopropyl Alcohol (IPA)".

AMORPHOUS FORM

□ High energy form (higher solubility and bioavailability)

- Stability depends on
- > Tg (glass transition temperature)
- Hygroscopicity
- > Purity may be variable from lot- to-lot, which may also impact solubility
- Storage conditions (heat and humidity)
- Clumping and gelling of the drug when exposed to aqueous solution
- Unpredictable shelf life if storage condition results into lowering of Tg
- Non-hygroscopicity and high Tg (50oC above the storage conditions) are
- the pre-requisites for stable solid dosage form
- If low Tg, solution in non-aqueous vehicle below the saturation solubility is the only possibility. However, change in purity could change the solubility.

Processing Considerations for Amorphous Compound

These reality checks are the most importance at the early stage of development.

Impact of Two Different Manufacturing Procedures of the Amorphous Formulation (MBP) on Bioavailability

PK Profiles in Dogs After Administration of Drug A Capsules (90 mg) Prepared Using MBP Vs. SD-MBP (Randomized Crossover Study, N = 12)

Drug Product	Cmax/Dose (ng/mL)(mg/kg)	Tmax (hr)	AUC/Dose (ng.h/mL)(mg/kg)	% Relative Bioavailability
MBP (by Co- Precipitation Process)	121 ± 34	2.50 ± 0.90	686 ± 237	100
SD-MBP (by Spary Drying Process)	61 ± 24	2.08 ± 0.67	329 ± 162	48

Comparison Between MBP and SD-MBP Photo-Microscopy

MBP Lot RC00051014

MBP Lot RC00051015

SD-MBP Lot 01110940

SD-MBP Lot GSR0003/50

Intrinsic Particle Size of MBP vs SD-MBP

		MBP RC00051015			GSR0003/50	
Intrinsic Particle Size (micron)	D10	D50	D90	D10	D50	D90
No sonic	0.46	0.76	3.81	0.6	3.63	8.31
W/sonic	0.41	0.60	0.91	0.6	3.96	7.77

PHYSICO-CHEMICAL PROPERTIES AFFECTING MANUFACTURING

PHYSICO-CHEMICAL PROPERTIES OF API IMPACTING MANUFACTURABILITY

Physico-chemical Properties of API Impacting Manufacturability Aspect

API	Impact	Solutions
Properties		
Particle Size/Shape Bulk Density Crystal Habit Surface Morphology	Compaction Tablet Ejection Flowability	Wet granulation to improve flowability and compactability
Melting Point	Low melting point contributed to picking and sticking during tabletting or encapsulating.	Utilize pelletization technology
Solubility	Aqueous wet granulation may not be robust for API having aqueous solubility (> 200 mg/mL).	Select appropriate granulating liquid in which the API is less soluble
Chemical Stability	Oxygen-sensitive compounds (i.e., Vitamin D3 analog)	Keep the API in lipid vehicle to prevent oxidation

Physico-chemical Properties of API Impacting Manufacturability Aspect

API Properties	Impact	Solutions
Amorphous vs. Crystalline Form	 Crystalline is the most stable form and desirable for development Amorphous cpd. is typically hygroscopic and tacky in nature. 	 Residual solvent(s) and impurities may have impact on Tg and must be well controlled Low Tg – Liquid or semi-solid filled in capsules High Tg - Possible conventional tablet/capsule dosage form or hot melt granulation process
Hydrate	Potential loss of bound water during storage and processing	Packaging becomes critical
Polymorphs	Potential polymorphic conversion	 Select the most stable form Appropriate solvent selection for granulation to avoid polymorphic conversion

IMPACT OF EXCIPIENTS

COMPACTION FORCE AND HARDNESS PROFILE OF LACTOSE

Impact of Hygroscopicity of Excipients

Lactose hydrous is less hygroscopic compared to Lactose Anhydrous, therefore it is a preferred diluent for a moisture-sensitive compound.

Effect of Magnesium Stearate Level

→ Final Blend with % Fines (<74 microns) = 23%
 → Final Blend with % Fines (<74 microns) = 12%

- Lubricant properties of magnesium stearate
 - Plates unfold ("Deck of Cards")
 - Coat powder surfaces
 - Reduce friction at tablet-die wall interface
 - Impede compaction at high levels
- Magnesium stearate level needs to be established based on percentage of fines of the granulation.
- Over-lubrication of magnesium stearate may result into poor compaction.

THE EFFECT OF ORDER OF ADDITION OF EXCIPIENTS ON TABLET PROPERTIES

- Microcrystalline Cellulose (MCC) and its effect on tablet hardness
 - MCC is a purified de-polymerized ∞cellulose. Compaction results from plastic deformation of the powder particles. Hydrogen bonds play a significant role in compaction of MCC.
 - Addition of MCC internally (during granulation) contributes to significant loss of plastic deformation and thereby compactibility and tablet hardness. The compressibility of the formed granules is far less than the original primary particles.
 - Addition of MCC externally results in a significant improvement in compressibility of MCC and thereby, stronger tablets.

Effect of Adding Microcrystalline Cellulose (MCC) Intragranularly and Extragranularly

Summary

Physico-chemical properties of drug substance and excipients play a significant role on dosage form selection and development.

> Thorough knowledge on their implications on bioavailability, stability and manufacturability is vital in developing dosage form.

- Formulation technologies, namely salt selection, particle size reduction, lipid delivery, amorphous formulation will help improve bioavailability of poorly soluble drugs.
- Dosage form design and characterization, including careful selection of excipients are critical to effectively address potential stability issues of solid, lipid and amorphous formulations.
- Thorough knowledge of API physico-chemical properties and unit operations would result in a robust formulation which would enable manufacturing on large scale commercial production without compromising stability and bioavailability.

Practical Uses of Amorphous Materials; Features and Stability

Duk Soon Choi, Ph.D.

Hoffmann La Roche, Nutley

Outline

- Where amorphous material fits in drug development
 - Landscape in drug development
 - Approaches to address BCS 2/4 molecules
- Definition of amorphous material and properties
 - Pros and cons of amorphous material
- Preparation of amorphous formulation
 - Stabilization of amorphous solids in solid dispersion
 - Selection of polymer
 - Selection of process
- Case studies
- Remarks on solid state stability

Landscape in Drug Development; Attrition Rate

Source: Pharmaceutical Research and Manufacturers of America.

Figure 1 shows the amount of time, on average, for a successful new drug to move through and complete the four stages. It also illustrates that for every 10,000 compounds initially identified, only one, on average, will be found safe and effective, and be approved by FDA.

* New Drug Development, GAO-07-49, Nov 2006

Failure Analysis

- Reasons for failure*
 - Safety issues
 - Lack of efficacy
 - Business cases
 - Poor drug like properties
- Reasons for slowdown
 - Synthetic complexity
 - Low potency
 - Ambiguous toxicity findings
 - Complex target indication
 - Manufacturability stability and consistency
 - Poor drug like properties

Poorly Water Soluble Compounds; A growing challenge

- About 40% of drug in market is poorly water soluble (BCS 2/4)
- Percentage of poorly water soluble APIs in development is further increasing owing to HT screening, combinatorial chemistry, and paradigm shift!
- Numerous APIs don't even enter development due to extremely low solubility
- BCS 2/4 compounds, if not addressed properly,
 - Lack of dose proportional absorption
 - High inter- and intra-subject variability
 - Substantial food effect
 - Potential side effects for narrow TI drugs

Approaches to Address BCS 2/4 Drugs

Chemical Modifications

- Pro-drugs
- Salts / Co-crystals
- Physical Form Modifications
 - Particle size reduction
 - Amorphous forms
- Formulation Intervention
 - Cosolvents
 - Complexation (cyclodextrins, dendrimers)
 - Lipid drug delivery: SEDDS/SMEDDS

Approaches to Address BCS 2/4 Drugs Chemical Form Modification - Pro-drug

Oseltamivir ethyl ester, $R = CH_2CH_3$

35% ± 11

TAMIFLU[®] (oseltamivir ethyl ester)

CO-F

Prodrug can improve solubility and permeability; thus bioavailability

Approaches to Address BCS 2/4 Drugs Chemical Form Modification - Salt / Cocrystal

Advantages of salt / cocrystal formation

- Improves solubility
- Provides rapid rate of dissolution and absorption
- Results in improved bioavailability
- Saccharin and gentisic cocrystal of compound X provided > 7 fold increase in AUC in dog over crystalline API Form A

Amorphous Forms

Examples of Amorphous Products

Product	Polymer	Process Comments		
Certican®	НРМС	Amorphous API	Stabilized by anti-oxidant	
Rezulin®	PVP	Melt Extrusion	Solubility	
Palladone®	Eudragit RL/RS	Melt Extrusion	Solubility and CR	
Kaletra®	PVP VA	Melt Extrusion	Solubility (safety/efficacy)	
Isoptin®	HPC/HPMC	Melt Extrusion	Solubility and CR	
Sporanox®	HPMC	Fluid bed coating and HME	Solubility	
Cesamet®	PVP	Solvent Granulation	Solubility, viscous liquid	
Intelence®	HPMC and MCC	Spray Drying	Solubility	
Nivadil®	HPMC	Emulsion-precipitation	Nanoparticle (solubility)	
Prograf®	HPMC	Rapid freezing	Solubility	
Depot Profact ®	PLGA		Implant	
Zoladex ®	PLGA		Implant	
Torcetrapib	HPMC-AS	Spray Drying	Solubility (Phase 2)	

Although concept of amorphous product has been around for more than half a century (1961 by Sekiguchi and Obi), yet very few commercial products are available

What is amorphous material? Crystalline vs. Amorphous

In most pharmaceutical application, a material is called amorphous if it exhibits XRPD profile that devoid sharp peaks

	Attributes	Crystalline State	Amorphous State		
	Melting	Has defined melting	Has no melting; usually has glass transition temperature		
Birefringence		Except cubic, crystal is anisotropic and exhibits birefringence	Amorphous is isotropic and exhibits no birefringence		
	X-Ray Diffraction	Reflect X-ray radiation, exhibiting characteristic diffraction pattern	Does not reflect X-ray beam, exhibiting characteristic amorphous defused halo		
	Energy level	Lower in E state, exhibits lower solubility, slower dissolution, more stable	Higher in E state, and exhibits higher solubility, faster dissolution and less stable.		
	Mechanical Properties	Lower specific molecular volume, leading to denser & harder material	Randomness causes higher molecular volume and less dense material		
	Spectroscopic	Interaction to NN	Interaction to NN		

Amorphousness is NOT measured directly; only implied/derived from absence of

Characteristics of Amorphous State

Minimum mobility temperature: Kauzmann Temp

Projected temperature at which thermodynamic properties of amorphous solid reach to those of crystalline solid

Properties of Amorphous Material

- Amorphous material is a disordered system with random molecular conformation/packing. Individual molecules are randomly oriented to one another and exist in a variety of conformational states, and experience different inter and intra molecular interactions.
- Amorphous material has higher chemical potential than crystalline counter part
 - Good
 - More soluble
 - Faster dissolution
 - More bioavailable
 - Bad
 - Chemically unstable
 - Physically unstable
 - Regulatory complex

Compound	APi Form	Theoretical*	Experimental	
Compound A	A / Form III	60 - 480	>10	
Compound B	A / Form I	77 - 114	> 6	
Compound C	A / Form I	100 – 600	> 5	
Indomethacin	A / Crystal	25 – 104	> 4	
Griseofulvin	A / Crystal	38 - 441	> 2	

Solubility Enhancement /

* Hancok and Parks, Rham Res 17, 2000

Concerns with Amorphous API

- The mechanical properties and hygroscopicity are markedly different from the corresponding crystalline API
- Water is known to have a profound effect on the Tg of amorphous API, acting as a plasticizer by increasing the free volume of the material, enhancing structural mobility and decreasing the Tg
- Manufacturing processing, packaging configuration and storage conditions are the most important factors influencing stability of the amorphous API
- In many instances, amorphous API itself can not withstand the manufacturing processing conditions and maintain its stability throughout the shelf-life

Therefore, stabilization of amorphous API by excipients (polymers) is very important.

Design of Amorphous Formulations (Solid Dispersion)

- Higher chemical potential results in higher dissolution rate and solubility but also makes them thermodynamically unstable
- API, without protection from matrix, may revert back to crystalline state
- Selection of polymer and process are crucial in designing amorphous formulations

Solid Dispersions Classification

Solid dispersions is defined as the system in which drug is dispersed in an inert carrier (polymer) or matrix at solid state

	Eutectic	Amorphous Precipitation	Solid Solution	Glass Su	Ispension	Glass Solution	
Туре	I	II	III	IV	V	VI	
Phase	2	2	1 or 2	2	2	1	
Drug	Crystalline	Amorphous	Molecular Dispersion	Crystalline	Amorphous	Molecular Dispersion	
Matrix	Crystalline	Crystalline	Crystalline	Amorphous	Amorphous	Amorphous	
		crystalline particle	amorphous molecularly particle dispersed				
Type I and IV Type II and V Type III and VI							
Chiou & Riegle	Chiou & Riegleman, Pharmacutical applications of solid dispersion systems, J. Pharm Sci, 1971, 60(9), 1281						

• Combining the incompatible, Dissertation (2006) by Drooge, Dirk Jan van

Role of Polymer in Amorphous Formulation

Selection of polymers and processes is critical for amorphous stabilization to achieve

- Delay the onset of crystallization
 - Reduction in molecular mobility
 - Reduction in driving force for crystallization
 - Increase in energy barrier for crystallization
 - Disruption of molecular recognition
- Maintains supersaturation
- Desired properties of polymers
 - Thermoplastic behavior deformability
 - Suitable Range of Tg 75 °C –180 °C
 - Low hygroscopicity
 - No toxicity GRAS status
 - Chemical and physical compatibility with drug
 - Ability to prevent crystallization and maintain super-saturation of the drug

C. Leuner and J. Dressman, Eur. J. of Pharmaceutics and Biopharmaceutics,

50: 47-60 (2000).

Factors in Selection of Polymer What to look for?

- Solubility Parameter
- Miscibility by Thermal Analysis: DSC
- Hot Stage Microscopy
- Spectroscopic Investigation (FTIR, Raman, NIR, ssNMR)
- Solubility Assessment of Drug in Polymer
 - Flory Huggins interaction parameter
 - Solubility determination in monomer unit
- Others
 - Matching hydrophobicity and partition coefficient
 - Ionic interaction potential
 - H-bonding potential / interaction

Structured Development Approach for Amorphous Systems Navnit Shah, Harpreet Sandhu, Duk Choi, Oskar Kalb, Susanne Page, Nicole Wyttenbach

A structured development approach is presented to guide the development of stable and commercially viable amorphous formulations. The proposed approach should not only enable the delivery of poorly soluble drugs but also help reduce the API needs, reduce in-vivo screening, minimize risks for late stage development and ensure consistent quality. During initial assessment, a guided evaluation of the physicochemical properties of API help to assess the degree of difficulty for the development. A range of tests including the in-silico evaluation, high-throughput screening assays, and miniaturized screening tools provide the road map for selecting the appropriate polymer, drug loading and suitable manufacturing process.

🔊 aapspress 🖉 Springer

Selection of Polymer Solubility Parameter

- Intrinsic physicochemical property
- Predictors of miscibility/solubility in solid dispersions
- Provides an easy and fast prediction tool for interaction between drug and polymer
- Matching solubility parameters for miscibility prediction of drug and polymer
 - Two components are assumed to be
 - miscible if $\Delta \delta < 7 \text{ MPa}^{0.5}$
 - immiscible if $\Delta \delta > 10 \text{ MPa}^{0.5}$

	Solubility Parameter (δ)*					
Polymer	Hansen	Hoftyzer/va n Krevelan	Ноу	Mean		
Drug A	25.5	29.9	-	27.7		
HPMC	21.7	26.0	24.6	24.1		
PVA	25.6	30.3	29.5	28.5		
MC	24.2	28.7	24.7	25.9		

- Hildebrand Parameter
- Hansen Parameter
- Hoftyzer / van Krevelen Parameter
- Hoy Parameter

* Calculated using Molecular Modeling Pro

Selection of Polymer and Drug Loading

Melting Point Depression at T₂*

* Zhao et. al. J. Pharm Sci. vol 100 (2011), pg 3196-3207

Selection of Polymer and Drug Loading

One Approach for Predicting Drug Solubility in Polymer*

* Zhao et. al. J. Pharm Sci. vol 100 (2011), pg 3196-3207

Miniaturized Screening Approach

SPADS (Screening of Polymer for Amorphous Drug Stabilization)

Preparation of solid dispersion

- Dissolve preset drug and polymer mixtures in volatile organic solvent
- Cast solid dispersion film by evaporating solvent leaving residue on glass slides, 96 well plate or aluminum pans
- Screening
 - 1. SPADS dissolution in 96 well plate format
 - Take two time points at 60 min and 180 min in FaSSIF of 37 C
 - 2. SPADS imaging in glass plate
 - Examine under PLM and/or AFM
 - 3. SPADS interaction assay in AI pan on 96 well plate format
 - Examine FTIR
- Stability assessment

Reanalyze the samples after storage at accelerated conditions
 * Wyttenbach et. al. AAPS (2009, 2011)

Amorphous Process Technology

Solvent-Based Methods

- ✓ Solvent evaporation (Spray Drying)
- ✓ Freeze-drying
- ✓ Solvent-emulsion evaporation
- ✓ Desolvation
- ✓ Co-precipitation
- ✓ Supercritical fluid
- ✓ Solvent-based coating/granulation
- ✓ Electrospinning

Melting Methods

- ✓ Co-grinding
- ✓ Vapor deposition
- ✓ Melt granulation
- ✓ Melt extrusion
- ✓ Ultrasonic

Pros and Cons of Common Technologies

Process	Pros	Cons
Spray Drying	 Rapid removal of solvent and fast solidification Equipment available from lab to full-scale commercial production Relatively low temperature processing feasible for highly volatile solvents (reducing thermal stress and degradation of the API) Continuous processing 	 Use of organic solvents (environmental safety) Difficulty to identify a common volatile solvent for API and polymer Difficulty to remove solvent completely requiring secondary drying process High manufacturing cost Generally results in very fine particles with low bulk density and poor flow properties
Melt Extrusion	 Short exposure to processing temperature (residence time less than a minute) Non-solvent processing (eliminate the need for solution preparation and removal steps) Customizable process (screw/die design, temperature profile, and solvent addition) Effect of humidity and oxygen can be almost completely eliminated Robust process control and easy scale-up Continuous process Broad selection of excipients with different molecular weight and physico-chemical 	 High energy mainly related to shear forces and temperature (high thermal stress in case of high melting compounds) High melt viscosity causing torque limitations High density and low porosity of the thermoplastic extrudates reduces the compaction of the material

Pros and Cons of Common Technologies

Process	Pros	Cons
Co-precipitation	- Suitable for compounds that cannot be	- Currently limited to ionic polymers
(MBP)	processed by spray drying (due to low	- Weak bases (and acid drugs) exhibit
	solubility in volatile organic solvents) or	significant solubility in acidic (and basic)
	melt extrusion (due to high melting point	solvents
	with thermal degradation).	- Adequate solubility in water miscible
	- Provides high degree of super-saturation	solvents (for ease of extraction); may
	due to use of ionic polymers	require multiple washings to remove
	- High exposure and prolonged plasma	solvents
	profile due to pH-dependent solubility	 Downstream processing to be
	- Amenable for continuous processing	considered carefully

Point to Consider in Selecting Processing Technology

Roche

Solvent Based Methods

- Solubility of the API and the polymer in solvents
- Ease of removal of solvent (boiling point)
- Residual solvents
- Degree of plasticizing effect by water or residual solvent (s)

Melt Methods

- Glass transition temperature (Tg) and melting point of both API and polymer
- Molecular weight and viscosity of the polymer
- Thermal stability
- Interaction of API and polymer (plasticizing or antiplasticizing)

Characterization Techniques

Examination of physical state

- XRD
- PLM
- DVS
- DSC
- Calorimeter
- IR/Raman
- SAXS

Dissolution method

- Need adequate discriminating power for quality and prediction of in vivo performance
- Dissolution condition (does, volume, surfactant) target to100% saturation based on kinetic solubility at 60 min

• Examination of molecular arrangement

- Confocal Raman
- IR
- mDSC
- AFM
- TEM
- Chemical imaging system
- Limited by spatial resolution
- Stability Prediction
 - Molecular mobility as predictive tools
 - Empirically
 - ICH condition
 - Excessive stress condition

Case Studies (Vemurafenib)

The Need

TARGET CANCER

A Roller Coaster Chase for a Cure

By AMY HARMON Published: February 21, 2010

- From "A Roller Coaster Chase for a Cure" published on February 21, 2010 in New York Times by Amy Harmon
- "The woman known in the trial as Patient 18 was one of the three who took 1,600 milligrams — 32 pills a day, she complained mildly, was a lot of pills."
- ""The higher doses, Dr. Flaherty and Dr. Chapman realized, were not getting from the digestive tract into their patients' bloodstreams.", "the doctors instructed patients to take the drug with high-fat foods in hopes that would help it dissolve more readily, but to no avail."
- "In December 2007, the companies halted the trial. They would wait while Roche chemists tried to reformulate the drug."

Initial Assessment

Vemurafenib API Properties

•MW: 489.9

•Log P: 3.0

```
•Weak acid with 7.6(A) 10.9(A)
```

•Tm: 270 C; Tg: 105 C

Polymer Selection

 In-silico prediction and modeling suggested HPMC-AS as candidate

Polymer	T _g (or Tm) (°C)	Mol. Wt. (g/mol)	δ (MPa) ^{0.5}	pH Solubility	Hygroscopicity (Moisture @ 75%RH/RT)	Comments	
Cellulose Based							
Hyperomellose 2910	170-180	10,000-50,000	23.8	1-10	~10%	Used in Sporanox™	
Hydroxypropylcellulose EF ³	100 150	80,000	31.5	1.0	12% (@ 84%	Thermo-reverisble gel	
Hydroxyethylcellulose LF ³	100-150	95,000	31.0	1-0	RH)		
Hydroxyethylcellulose HF ³		115,0000					
Hyperomellose acetate succinate,			40.5				
(HPMC AS) LF ^{1,4}	113 ± 2	55,000-93,000	01.0	>5.5	7-8%		
HPMC AS , MF ^{1,4}	113 ± 2	55,000-93,000	31.2	>6.0	6-7%	Can stabilize due	
HPMC AS , HF ^{1,4}	113 ± 2	55,000-93,000	-	>6.5	5-6%	to hydrophobicity and possibility of forming colloidal structures in aqueous solutions.	
Cellulose acetate phthalate1	160-170 (192)	N/A	27	>6.0	7-8%		
Cellulose acetate butyrate ^{6,7}	130 (155-165)	30,000	28.7	negligible	N/A		
Cellulose acetate ¹	170-190 (230- 300)	30,000-60,000	25.8-26.2	N/A	N/A		
Hyperomellose phthalate ^{1,5}	133-137(150)	20,000-200,000	28	>5.0	7-8%		
Ethyl cellulose ¹	129-133	-	-	insoluble	~3%	Controlled release	

Manufacturing Technology

•Evaluation of physicochemical properties suggested MBP as viable process

Overall Assessment

MBP Manufacturing Scheme

Characterization

- XRPD indicates MBP is amorphous and stays amorphous
- Spectroscopy (IR, Raman and ssNMR) suggests disruption of drug – drug interaction and existence of drug – polymer interaction.
- TEM, EDAX, AFM and NIR CI indicate molecular distribution of drug molecules within polymer matrix without sign of heterogeneity
- Long term stability (> 36 months) show satisfactory physical stability when stored at ambient storage condition.

Performance

- MBP formulation maintained supersaturation during dissolution for up to 4 hours
- MBP formulation provided satisfactory PK profile
- MBP formulation demonstrated satisfactory physical stability
- MBP formulation successfully scaled up to commercial scale

Stability Prediction Storage Condition - 40 °C/75% RH vs 25 °C/60% RH Open

- Amorphous formulations showed instability at an accelerated stability condition (40°C/75% RH, 12 months); but good stability at room temperature (25°C/60% RH, 36 months)
- Accelerated stability condition is not predictive for long term stability

Solid State Stability Prediction

Glass transition temperature vs and storage temperature

• The rule of thumb that a stable solid dispersion is obtained when the glass transition temperature is 50 K above the storage temperature worked nicely for one compound, but not for the other one.

Summary

- Amorphous formulation, if properly manufactured, does provide superior bioavailability over crystalline form
- Selection of right polymer and process is critical for stable amorphous formulation
- Stability Prediction
 - As of today, there is still a lack of a predictive stability model
 - Molecular mobility estimation as predictive tools

Acknowledgement

- Dr. Hitesh Chokshi
- Dr. Navnit Shah
- Dr. Harpreet Sandhu
- Dr. Susanne Page
- PF Group Members

Challenges and Opportunities for Oral Delivery of Poorly Soluble Drugs

Dr. Navnit Shah

Distinguished Scientist

Hoffmann-La Roche, Inc.

Outline

- Overview of Industry Today
 - Sources of Oral Bioavailability Limitations
 - Market Trends
- Challenges & Opportunities for Poorly Soluble APIs
 - Impact of low solubility in development
 - Case studies of successful development
- Technologies and Limitations for Handling Poorly Soluble Compounds
 - Emerging Opportunities to Improve Amorphous Development
- Future Direction and Concluding Comments

Sources of Bioavailability Limitations

Noyes-Whitney Equation

BLUE SHEET RELEASED FOR PRESENTATION

Solubility Trends & Developmental Pipelines Compound Trends

Lipinski's Rule of 5

Roche

- Predictor of Limited Oral • Bioavailability
 - Molecular Weight > 500 •
 - Log P > 5
 - H-Bond Donors > 5
 - H-Bond Acceptors > 10 •
- Examples Meeting The Rule of 5
 - Cyclosporine
 - Itraconazole
 - Ritonavir
 - Lopinavir

592 oral drugs approved worldwide between 1983 and 2 2007 The size of the squares 0 represents the mean Lipinski Launch Publication score -1 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

BLUE SHEET RELEASED FOR PRESENTATION

Nature Reviews | Drug Discovery

Roche Low Solubility Drug Development Challenges DRUG DEVELOPMENT LIFECYCLE PHASE I PHASE II PHASE III PRECLINICAL Effective Preclinical Design Translating Preclinical Efficacy Inter & Intra Subject Variability **Poor Patient Compliance** Food Effect Limited Amorphous CR Difficulty Establishing MTD and Safety Challenges for High Dose Product Design Limited Portfolio of Acceptable Excipients **Predicting Amorphous Stability** Need for Non-Conventional Technologies Limited Manufacturing Technologies

- Low solubility can present major challenges to the successful development of NCEs
- The nature of the challenges change as the program progresses through clinical • development

Solubility Driven Challenges in Preclinical Development

- Adequate solubility needed for potency and safety assays and must be considered during design and execution of *in vitro* assays
 - Compounds with poor solubility have the potential to precipitate in assay media/buffer.
 - DMSO stock solutions of poorly soluble compounds have the potential to precipitate during freeze thaw cycles.
 - Assay media greatly impacts solubility
- Adequate solubility is needed for *in vivo* studies at all stages leading to EIH
 - To achieve optimal exposure in PK/PD studies to get proof of concept (POC) in appropriate animal models for project to move to the next stage
 - Multiple fold exposure is required for safety studies in preclinical tox species
 - Salt forms or special formulation are needed to achieve the desired exposure
 - To achieve the exposure in human studies
- Future Challenges
 - Design and development of technologies and compositions to support early development work with limited API supply
 - Optimization of in silico methods to improve computer based design
 - New materials for achieving maximum exposure (multiples over anticipated dos BLUE SHEET RELEASED FOR PRESENTATION

Options for Improving Solubility

Compound & Technology Risk Mapping

- Low solubility compounds are inherently more challenging to develop, raising the risk of failure
- Many technologies can address low solubility but also present trade-offs

Tricor[®] - Formulation Intervention to Improve Delivery

Neoral[®] - Formulation Intervention to Improve Delivery and Extend Market Protection

Kaletra[®] - Amorphous Dispersion for Improve Delivery

Rosenberg et al. Patent # WO 2006/091529 A2

Kaletra Soft Gelatin Capsule

- Dose per unit:
 - 133 mg lopinavir/33 mg ritonavir
- Dose administration:
 - t.i.d. with food
- Refrigerated storage required

Kaletra Tablet

- Dose per unit:
 - 200 mg lopinavir/50 mg ritonavir
- Dose administration:
 - b.i.d. independent of food
- Store at ambient conditions

BLUE SHEET RELEASED FOR PRESENTATION

KALETRA

Zelboraf[®] - Molecule to Medicine with Novel Technology

-07-0029 300 mg capsule

High Dose >>>> Patient Dosing Convenience **BLUE SHEET RELEASED FOR PRESENTATION**

Current Success Stories Zelboraf[®] - Making a Difference in Therapy

Bioavailability Comparison

Treatment Results in Tumor Regression

- Development of an amorphous formulation enabled a molecule which could otherwise not be delivered → Life saving benefit to patients in need
- Successful implementation of new technology led to commercial product

Oral Formulations Approaches for Poorly Water Soluble Compounds (BCS 2/4 compounds)

Conventional → No-Conventional: Risk and						
complexity						
Salts Pro-drug	SEDDS/SMEDD S A A A A A A A A A A A A A A A A A A	Nanoparticles Polymeric micelles Dendrimers	Amorphous (high dissolution rate and super saturation)			
Particle size reduction	Complexes Co-crystals	Crystalline Solid Dispersion				

Need for amorphous formulation has significantly increased

Technologies to Improve Solubility *PRODRUGS*

Chemical approach using reversible derivatives that is pharmacologically inert

Successfully applied to a number of commercially marketed products

Prodrugs represents a Chemical/Biochemical approach to the Optimization of Drug Delivery

Advantages

- NCE, Patentable
- Enhanced biopharmaceutical performance

VX-175/GW 908

7 fold increase in solubility

Opportunities Reducing development

- Reducing development
 cost
- •Site targeted prodrug design

•Expanding chemistries

Technologies to Improve Solubility PARTICLE SIZE REDUCTION

Advantages

- Improve exposure reduce dose
- Faster onset of action improve efficacy
- Minimize variability improve efficacy and decrease toxicity
- Reduce/eliminate food effect improve convenience and compliance

Opportunities

- Need for more advanced MFG technologies – Imprinting, Templating, etc...
- Expansion of nanotechnology into drugdevice hybrid products – MEMs technology
- Lower cost of goods for manufacturing Current technologies are expensive,

Technologies to Improve Solubility *LIPID FORMULATIONS*

Technologies to Improve Solubility CYCLODEXTRINS

Cyclodextrins

Oligosaccharides (6 or

more glucopyranose units)

Forms inclusion complexes with drugs

- Steric
- Thermodynamic interactions

Advantages

• Enhanced drug delivery through biological membranes

Increased stability

Hydrophobic

Interior

Secondary Face

Plasma Concentration (±S.E.) Versus Time Profile of Cinnarizine After a 25 mg Dose to Male Beagle Dogs (n=4), SBE4-β-CD, pH 4.5 Solution (□); HP-β-CD, pH 4.5 Solution (□); SBE4-β-CD, Capsule (●); pH 4.5 Aqueous Suspension (Δ); Plain Capsule - No SBE4-β-CD (O)

 β -Cyclodextrin

Opportunities

• Improve stability of cyclodextrin in the intestinal environment

From: Javinen et al. *J. Pharm. Sci.*, 84, 295-299 (1995) (O) Del Valle et al., *Process Biochem*, (2003) Carrier et al. *J. Control. Release*. 123, 78-99. (2007)

Technologies to Improve Solubility *POLYMERIC MICELLES*

Self-assembling amphiphilic polymer

(i.g. poly(ethylene oxide)-*b*-poly(L-amino acid)

(PEO-*b*-PLAA)) forms micelles (< 100 nm)

- Provides sites for attachment of drugs
- Better kinetic and thermodynamic stability than surfactant based micelles

Advantages

- Stays unrecognized during blood circulations
- Extended circulation time
- Lower toxicity

se in pH, hydrolysis celle and release of druc

Opportunities

Loading efficiency

Technologies to Improve Solubility AMORPHOUS TECHNOLOGIES

Examples of Commercial Products Using Amorphous API or ASD

Product	Form	Mol.Wt	Tm	Тg	Tm/Tg (C/C)	Tm/Tg (K/K)	Log P	Marketed Name
Zafiralukast	Amo. API	575.7	139	98	1.4	1.1	4.8	Accolate (GSK)
Rosuvastatin Ca	Amo. API	481.5	135	102	1.3	1.1	1.5	Crestor (AZ)
Quniapril HCI	Amo. API	474.9	125	91	1.4	1.1	0.9	Accupril (Pfizer)
Nelfinavir Mes.	Amo. API	663.9	133	105	1.3	1.1	4.1	Viracept (Pfizer)
Itraconazole	ASD	705.6	166	59	2.8	1.3	5.6	Sporanox (Jansen)
Ritonavir	ASD	720.3	123	87	1.4	1.1	4.9	Norvir (Abbott)
Lopinavir	ASD	628.8	125	101	1.2	1.1	~4.3	Kaletra* (Abbott)
Telaprevir	ASD	679.9	246	105	2.3	1.4	3.5	Incivek (Vertex)
Vemurafenib	ASD	489.9	270	109	2.5	1.4	3.8	Zelboraf (Roche)

Pure amorphous API poses much higher lisk compared to ASD

Development of stabilized ASD is preferred

• Successful commercialization of ASDs has been achieved with multiple technologies

Heating & Cooling method has an issue of decomposition of the compound with high melting point The compound of "easy amorphous" can be categorized into non-crystallizing compounds and has low Tm/Tg ratio Even if a compound has low Tm/Tg ratio and categorized as "easy amorphous", the compound can still be difficult to make amorphous

BLUE SHEET RELEASED FOR PRESENTATION

22

Dissolution Methods and Challenges

- High energy systems prone to crystallize during dissolution
- Crystallization kinetics depend on Temperature, Sinl Condition and Media Composition
- Drug may be associated with polymer (free drug vs. bound drug)
- Higher supersaturation generally causes faster precipitation (lower recovery)

Judicious selection of dissolution condition is critical for "meaningful" interpretation of data

Amorphous Processing Technology Selection Guide

Compounds with melting point < 200°C could be suitable for HME and compounds with solubility > 50 mg/mL in low boiling point volatile solvent are suitable for SD

Pros & Cons of Amorphous Technologies

Technology	Pros	Cons
Melt Extrusion	Non-solvent based Short exposure to high temperature Modular design provides flexibility Extrudate density helps improve stability Continuous process Established scale-up and commercial feasibility	Thermal degradation Limited application for high T _m compounds Dissolution (erosion) Reduced compactability
Spray Drying	Rapid removal of solvent Established scale-up and commercial feasibility Processing occurs below Tg Applicable for low boiling point, low toxicity solvents (i.e. ethanol, acetone)	Requires adequate solubility in volatile solvent Residual solvent levels must be tested Phase separation may occur based on solubilities Low bulk density requires densification
Microprecipitation	Useful for compounds not amenable to HME or SD Provides high degree of super-saturation (ionic interaction) Modulated plasma profile due to enteric polymer Semi-continuous processing	Require ionic polymers Not suitable for weakly basic drugs Solvent extraction may require multiple washings Downstream processing required Scale-up challenges exist

is important to select the right process for the molecule, not force a process onto the compound

If necessary consider other novel technologies (i.e. mesoporous silica, KinetiSol)

Opportunities for New Technologies *Case Study with Mesoporous Silica*

Mesoporous silica can improve dissolution rates and exposure of poorly soluble compounds

Mellaerts et al., EJPB. 69 2008, p. 223

Opportunities for New Technologies *Case Study with KinetiSol*

Melt Extrusion

• Application of new technologies offers the possibility to significantly expand manufacturing window

Future Directions

TODAY

Many industrial pipelines have solubility limitations

Limited number of approved excipients for solubility enhancement

Simple models and descriptors predict stability and performance of advanced systems

Batch manufacturing processes with a limited portfolio of techniques to prepare advanced systems

TOMORROW

becomes highly engineered to reduce solubility liabilities Pharma companies and excipient manufacturers work jointly to develop excipients with unique advantages

In silico methods advance to provide computer aided design and a priori prediction

Continuous manufacturing and new technologies provide advantages to poorly soluble compounds

Summary Remarks

- Even today, poorly soluble compounds present major development challenges that may limit or even prevent a life saving medication from reaching the market
 - Drives substantial investments in new technologies and products
- Limitations of materials and technologies present unique opportunities for partnerships and collaborations to develop these areas
 - Will generate new models for conducting business and developing therapies
- True innovation allows a molecule to become a medicine

Acknowledgements

We Innovate Healthcare

- Dr. Dharmendra Singhal Hoffmann-La Roche, Inc.
- Dr. Harpreet Sandhu Hoffmann-La Roche, Inc.
- Dr. Waseem Malick Hoffmann-La Roche, Inc.
- Dr. James DiNunzio Hoffmann-La Roche, Inc.
- Dr. Raman lyer Hoffmann-La Roche, Inc.
- Ms. Kaoru Tominaga Hoffmann-La Roche, Inc.

Questions

